$$
\begin{aligned}
& \text { حقيبة تعليمية } \\
& \text { بعنوان: رياضيات } 2 \\
& \text { اعداد : } \\
& \text { اعد اد }
\end{aligned}
$$

التّريسي الرئيسـي: م.م رويده منير محمد التثدريسي الثّاتوي: م.د نـجم عبدالله جـازع 2022-2023

يتسم البرنامـج التتليمي الرياضيـات 2 بالتدريس باللغة الانكليزيـة لمدة ثلاثون اسبوعا بواقع ثُلاث ساعات نظري اسبوعيا يتم تدريس الطلبة القوانين والمسـائل الرياضية اللازمـة لغرض حل الاوائر الكهربائية البسيطة والمعقدة ضمن منهج متكامل ، و الاطلاع على الاعداد المركبة والاعداد التخيلية وفهم ومـرفة التطبيقات العملية لقوانين والمسائل الرياضية،التعرف على المعادلات الرياضية الخاصة بـالتفاضل وكيفية حلها، شرح نظريـة النكامل من خلال مفهوم المساحة، فهم ومـرفة المعادلات الرياضبة اللازمـة والتطبيقات

وصف المقرّر الار اسـى

وزارة التعليم العاللي والبحث العلمي
كلية الرشيد الجامعةٌ
قسم تقتيات الاجهزة الطبية

			بينِّ المتزر		． 15
	فرب大		ت الثتقل الفطلوبة	Clald	الانسير
A		Vector analysis	المالج	3	1
الهنحانات السبو عيه 	هحاضرٌ	Vector field	الطلا	3	2
豆 （1）	هحاضره	Linear algebra	المالج	3	3
监 	هحاضرح نظري	Vector calculus	الطلب	3	4
اهـحانات السبر عيه 	هحاضر نظري	Scalars and vector unit		3	5
 	هحاضرهنزير	Orthogonal vector	الطلبّ	3	6
اصنحانات السبر عيِ الـ	هحاضرحنظري	Dot product	الطالب	3	7
الهـحانات السبر عبي 	محاضّ	cross product	الطلب	3	8
استحات السبر 		Theory for vector field	اللـلا	3	9
少 		Vector variable function		3	10
التحانات السير عيه 	محاضر	Polar coordinates－ gradient in polar	الطلا	3	11

坚 الـد		Spherical coordinates	الat	3	12
共 الـشا	er	Complex number	الإلب	3	13
等 1		Polar form of complex number		3	14
｜ استله تَليه ويعندي	محاضره نظري	Algebra for complex number	الطالب بنه الثدهى	3	15
اعنحاتات اسيوريهِ 	محاضنر نظري	Algebra for Spherical coordinates	الطالب	3	16
 	بحاضّره نظري	Infinite series		3	17
 	محاضنر نظري	Power series		3	18
الهنحاتات السيو عيه 	محاضره نظري	Convergence and divergence series		3	19
 استله مَبليهر وبعديه	محاضنره نظر	Number and Complex series		3	20
 اسظلث ثَبلِّ وبعدبِ	محاضنره نظري	Complex variable		3	21
استحاتِ اسبور 	محاضره نظر	Cauchy－ Riemann equations	الطلا	3	22
	（	Differential equation		3	23

وزارة التعليم العاللي والبحث العلمي
كلية الرشيد الجامعةٌ
قسم تقتيات الاجهزة الطبية
vii

المَّحاتك السبوعيّ استله بَليهِ ربعيِّ	محاضر نظرّ	Differential equation of the first order	الططلب	3	24
اليَّحالنت السبو عيّ استله فـليّه ربعيـ	محضر نضرّ	Differential equation of n order		3	25
اعينحانِّ البيو يِي 	محضرد نظرى	Application		3	26
 	محضرد نظرى	Multiple integrations	الطالب بغا	3	27
المتاتاتك اسيو عيج الستله فَليه ربعتِ	محاضرد نظر	Surface area		3	28
A استل بَبِلِّه بـعِي	****)	Green theorem	الd	3	29
المَّاتكت اسبيو يجّ استله فَبلِه ربعيِّ	محاضر نضري	Stokes theorem		3	30

Calculus II	年
	ر)
Calculus Thomas $-13^{\text {th }}$ edition Schaums mathematic book Practice problem calculus Il Topic sin a calculus Il-wolfram mathworld	با ولا (....)
	...

Ministry of Higher Education \& Scientific Research Al-Rasheed University College
Department of Medical Instrumentation Engineering

قسم تقتيات الاجهزة الطبية

هٌهرس الم~تّوبـات

إرشادات للطلبة

- الرغبة والحماس للتعليم - كن مشاركاً في جميع الأنشطة - احترم أفكار المدرس والزملاء - أنقد أفكار المدرس والزملاء بأدب إن كانت هناك حاجة. - احرص على استثمـار الوقت - تقبل الاور الذي يسند إليك في المجموعة - حفز أفراد مجموعتك في المشاركة في النشاطات - احرص على بناء علاقات طيبة مع المدرس والزملاء أثناء المحاضرة - احرص على ما تعلمته في المحاضرة وطبقه في الميدان . - ركز ذهنك بالتعليم واحرص على التطبيق المباشر
- تغلق الموبايل قبل الثروع بالمحاضرة

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Vector analysis
c. Central Ideas:

- Introduction
- Vector Arithmetic
- Scalars and vector unit

Objectives: after the end of courses the student will be able to:

- Define Scalar Quantities, Vector Quantities, Unit vector and magintud vector
- Find addition of the vector, subtraction, scalar multiplication

2. Pre test:

Q1-fill in the blanks within an appropriate word(s):
1- The vector $\overrightarrow{A B}$ from $A=(2,-7,0)$ to $B=(1,-3,-5)$ is \qquad
2- The length of the vector,$\vec{v}=(-1,3,2)$ is \qquad
Q2- Find the vector \vec{A} directed from point $(2,-4,1)$ to point $(0,-2,0)$ in
Cartesian coordinates and find the unit vector along \vec{A} Q3-

1) Find $\overrightarrow{\boldsymbol{u}}+\vec{v}$ for $\overrightarrow{\boldsymbol{u}}=(\mathbf{3 i}+\mathbf{4} \mathbf{j}), \overrightarrow{\boldsymbol{v}}=(-2 \mathbf{i}+\mathbf{j})$.
2) Find $\overrightarrow{\boldsymbol{u}}-\vec{v}$ for $\overrightarrow{\boldsymbol{u}}=5(3 \mathrm{i}+2 \mathrm{j}), \vec{v}=(7 \mathrm{i}+3 \mathrm{j})$.

Definition Scalar Quantities A scalar is a quantity which has only a magnitude in space. Such as: length, weight, volume, Temperature... etc..

Definition Vector Quantities are a quantity which has both Magnitude and direction in space such as: force, speed..... etc $\vec{v}=\overrightarrow{\mathbf{A B}}, \vec{u}=\overrightarrow{\mathbf{C D}}, \vec{w}=\overrightarrow{\mathbf{E F}}$
 $\overrightarrow{\boldsymbol{w}}$

Note

(1) The zero vector is just a point, and it is denoted by 0 , and has arbitrary direction, which is written as $\overrightarrow{0}$
(2) Given the two points $A=\left(a_{0}, b_{0}, c_{0}\right)$ and $B=\left(a_{1}, b_{1}, c_{1}\right)$ the vector with the representation $\overrightarrow{A B}=\left(a_{1}-a_{0}, b_{1}-b_{0}, c_{1}-c_{0}\right)$
Note that the vector above is the vector that starts at A and ends at B.
The vector that starts at B and ends at A is $\overrightarrow{B A}=\left(a_{0-}, a_{1}, b_{0}-b_{1}, c_{0}-c_{1}\right)$
(3) $\overrightarrow{A B}=-\overrightarrow{B A}$

Example 1: Given the vector for each of the following.
1- The vector from $\mathrm{A}=(2,-7,0)$ to $\mathrm{B}=(1,-3,-5)$
2- The vector from $C=(1,-3,-5)$ to $D=(2,-7,0)$

Solution

1- $\overrightarrow{A B}=(1-2,-3+7,-5-0)=(-1,4,-5)$
2. $\overrightarrow{C D}=(2-1,-7+3,0+5)=(1,4,5)$

Definition Unit vector A vector of length $\underline{\underline{1}}$ is called a unit vector. In an $x y$ coordinate system the unit vectors along the x - and y-axis are denoted by i and j, respectively. In an $x y z$-coordinate system the unit vectors along the x-, y - and z axis are denoted by i, j and k, respectively. Thus:

$$
\begin{array}{lll}
\vec{\imath}=(\mathbf{1 , 0}), & j=(\mathbf{0}, \mathbf{1}) & \text { (2-dimension) } \\
\vec{\imath}=(\mathbf{1}, \mathbf{0}, \mathbf{0}), & j=(\mathbf{0}, \mathbf{1}, \mathbf{0}), \quad \vec{k}=(\mathbf{0}, \mathbf{0}, \mathbf{1}) & \text { (3-dimension) }
\end{array}
$$

Note

All vectors can be expressed as linear combinations of the unit vectors

$$
\begin{aligned}
& \vec{v}=\left(v_{1}, v_{2}\right)=v_{1} \mathrm{i}+v_{2} \mathrm{j} \\
& \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \mathrm{i}+v_{2 \mathrm{j}} \mathrm{j}+v_{3} \mathrm{k}
\end{aligned}
$$

Example Write the vector $\overrightarrow{\boldsymbol{u}}=(3,4,5)$ as linear combinations of the unit vector

Solution
 $$
\overrightarrow{\boldsymbol{u}}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}
$$

Definition magnitude or (length) The magnitude or (length) of the vector $v=\left(v_{1}, v_{2}, v_{3}\right)$ is denoted by the symbol $\|\vec{v}\|$ or $|\vec{v}|$ is.

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Properties of the magnitude

a) $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$
b) $\|\overrightarrow{\mathbf{0}}\|=\mathbf{0}$
c) $\|\vec{v}\| \geq 0$
d) $\|\vec{v}\|=0$ if and only if $\vec{v}=\overrightarrow{0}$
e) $\|\vec{v}+\overrightarrow{\boldsymbol{u}}\| \leq\|\overrightarrow{\boldsymbol{v}}\|+\|\overrightarrow{\boldsymbol{u}}\|$
f) $\|\vec{v} \cdot \vec{u}\| \leq\|\vec{v}\| \cdot\|\overrightarrow{\boldsymbol{u}}\|$

Example:

Find the length of the vector , $\vec{v}=(-1,3,2)$
Solution

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{(-1)^{2}+(3)^{2}+(2)^{2}}=\sqrt{1+9+4}=\sqrt{14}
$$

Note

The magnitude of a vector is not in general equal to the sum of the magnitudes of the two original vectors.

For Example
The magnitude of the vector $(3,0,0)$ is 3 , and the magnitude of the vector $(-2,0,0)$ is 2 ,
but the magnitude of the vector $(3,0,0)+(-2,0,0)$ is 1 , not 5 !

A unit vector (u_{n}) for any vector $\overrightarrow{\boldsymbol{A}}$

Defined as a vector whose magnitude is unity and is along of \vec{A} that is

$$
\mathbf{u}_{\mathrm{n}}=\frac{\overrightarrow{\mathrm{A}}}{|\vec{A}|}
$$

Example:

Find the vector \vec{A} directed from point $(\mathbf{2},-\mathbf{4}, \mathbf{1})$ to point $(\mathbf{0},-\mathbf{2}, 0)$ in Cartesian coordinates and find the unit vector along $\overrightarrow{\mathbf{A}}$
Solution

$$
\begin{aligned}
& \vec{A}=-2 \mathrm{i}+2 \mathrm{j} \cdot \mathrm{k} \\
& |\vec{A}|=\sqrt{(-2)^{2}+(2)^{2}+(-1)^{2}}=3 \\
& \quad \mathbf{u}_{\mathrm{n}}=\frac{\overrightarrow{\mathrm{A}}}{|\overrightarrow{\mathrm{~A}}|}=\frac{-2 \mathrm{i}+2 \mathrm{j}-\mathrm{k}}{3}=\frac{-2}{3} i+\frac{2}{3} j-\frac{1}{3} k
\end{aligned}
$$

Definition Inverse Vectors An inverse vector is a vector of equal magnitude to the original but in the opposite direction

- $\overrightarrow{\mathrm{AB}}=-\overrightarrow{\mathrm{BA}}$
- $\overrightarrow{\mathbf{A B}}+\overrightarrow{\mathbf{B A}}=\mathbf{0}$

Vector Arithmetic

1- addition of the vector:

Given the two vectors $\overrightarrow{\mathbf{v}}=\left(\mathrm{v}_{1}, v_{2}, v_{3}\right)$ and $\overrightarrow{\mathbf{w}}=\left(\mathrm{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right)$
The addition of the two vectors is given by the following formula

$$
\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}=\left(\mathbf{v}_{1}+\mathbf{w}_{1}, \mathbf{v}_{2}+w_{2}, v_{3}+w_{3}\right)
$$

For $\vec{v}=a_{1} i+a_{2} j+a_{3} k$ and $\vec{w}=b_{1} i+b_{2} j+b_{3} k$ be two vectors
Then $\vec{v}+\vec{w}=\left(a_{1}+b_{1}\right) i+\left(a_{2}+b_{2}\right) j+\left(a_{3}+b_{3}\right) k$

2- Subtraction of vector

Given the two vectors $\overrightarrow{\mathbf{v}}=\left(\mathbf{v}_{1}, v_{2}, v_{3}\right)$ and $\overrightarrow{\mathbf{u}}=\left(\mathbf{u}_{1}, u_{2}, u_{3}\right)$
the Subtraction vector is

$$
\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{u}}=\left(\mathbf{v}_{\mathbf{1}}-\mathbf{u}_{1}, \mathbf{v}_{\mathbf{2}}-u_{2}, v_{3}-u_{3}\right)
$$

For $\vec{v}=a_{1} i+a_{2} j+a_{3} k$ and $\vec{w}=b_{1} i+b_{2} j+b_{3} k$ be two vectors
Then $\vec{v}-\vec{w}=\left(a_{1}-b_{1}\right) i+\left(a_{2}-b_{2}\right) j+\left(a_{3}-b_{3}\right) k$
The subtraction operation between two vectors $\overrightarrow{\boldsymbol{u}}-\overrightarrow{\boldsymbol{v}}$ can be understood as a vector addition between the first vector and the opposite of the second vector:

Definition scalar multiplication

Given the vectors $\overrightarrow{\mathbf{v}}=\left(\mathrm{v}_{1}, v_{2}, v_{3}\right)$ and any number C scalar multiplication is

$$
\mathbf{C} \overrightarrow{\mathbf{v}}=\left(\mathbf{C v}_{1}, C v_{2}, C v_{3}\right)
$$

For $\vec{v}=v_{1} i+v_{2} j+v_{3} k$
Then $C \vec{v}=C v_{1} i+C v_{2} j+C v_{3} k$
Scalar multiplication obeys the following rules :

- Distributive in the scalar: $(k+d) \vec{v}=k \vec{v}+d \vec{v}$
- Distributive in the vector: $k(\vec{v}+\vec{w})=k \vec{v}+k \vec{w}$
- Associate of product of scalars with scalar multiplication: $(\boldsymbol{k d} \boldsymbol{d} \boldsymbol{\vec { v }} \boldsymbol{=} \boldsymbol{k}(\boldsymbol{d} \overrightarrow{\boldsymbol{v}})$
- Multiplying by 1 does not change a vector: $\overrightarrow{1 v}=\vec{v}$
- Multiplying by $\mathbf{0}$ gives the zero vector: $\mathbf{0} \overrightarrow{\boldsymbol{v}}=\overrightarrow{\mathbf{0}}$
- Multiplying by -1 gives the additive inverse: $(-1) \vec{v}=-\vec{v}$

Properties of vector algebra

If \vec{v}, \vec{w} and $\overrightarrow{\boldsymbol{u}}$ are vectors and a and b two numbers then we have the following properties:
a. For any vector v there is a vector $(-v)$ such that $\vec{v}+(-\vec{v})=\overrightarrow{0}$
b. $\vec{v}+\vec{w}=\vec{w}+\vec{v}$

Commutative Law
c. $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$

Associative Law
d. $\vec{v}+0=\vec{v}=0+\vec{v}$

Additive Identity
e. $(a+b) \vec{v}=a \vec{v}+b \vec{v}$

Example

3) Find $\overrightarrow{\boldsymbol{u}}+\vec{v}$ for $\overrightarrow{\boldsymbol{u}}=(\mathbf{3 i}+\mathbf{4} \mathbf{j})$, $\overrightarrow{\boldsymbol{v}}=(-2 \mathbf{i}+\mathbf{j})$.
4) Find $\overrightarrow{\boldsymbol{u}}-\vec{v}$ for $\overrightarrow{\boldsymbol{u}}=\mathbf{5}(\mathbf{3 i}+2 \mathbf{j}), \vec{v}=(7 i+3 j)$.

Solution

1) $\vec{u}+\vec{v}=(3 i+4 j)+(-2 i+j)=(3-2) i+(4+1) j=1 i+5 j=i+5 j$
2) $5(3 \mathrm{i}+2 \mathrm{j})-(7 \mathrm{i}+3 \mathrm{j})=(15 \mathrm{i}+10 \mathrm{j})-(7 \mathbf{i}+3 \mathrm{j})=(15-7) \mathbf{i}+(10-3) \mathbf{j}=8 \mathbf{i}+7 \mathbf{j}$

Note

Let $\vec{v}=a_{1} i+a_{2} j+a_{3} k$ and $\vec{w}=b_{1} i+b_{2} j+b_{3} k$ be two vectors and

$$
\vec{v}=\vec{w} \Leftrightarrow a_{1}=b_{1} \text { and } a_{2}=b_{2} \text { and } a_{3}=b_{3}
$$

Example: Consider the vectors $\overrightarrow{P Q}$ and $\overrightarrow{R S}$ in \mathbf{R}^{3},
where $P=(2,1,5), Q=(3,5,7)$,

$$
R=(1,-3,-2) \text { and } S=(2,1,0) . \text { Does } \overrightarrow{P Q}=\overrightarrow{R S} ?
$$

Solution

$$
\begin{aligned}
& \overrightarrow{P Q}=Q-P=(3-2,5-1,7-5)=(1,4,2) \\
& \overrightarrow{R S}=(2-1,1-(-3), 0-(-2))=(1,4,2)
\end{aligned}
$$

$\therefore \overrightarrow{P Q}=\overrightarrow{R S}=(1,4,2)$.

Example:

Door $\vec{u}=(-2,1), \vec{v}=(-2,1)$

1) for $\vec{u}=(5,3), \vec{v}=(3,5)$

Solution

1) $\vec{u}=\vec{v}$
because $u_{1}=-2, v_{1}=-2 \Longrightarrow u_{1}=v_{1}$ and $u_{2}=1, v_{2}=1 \Longrightarrow u_{2}=v_{2}$
2) $\vec{u} \neq \vec{v}$
because. $u_{1}=5 v_{1}=3, \Rightarrow u_{1} \neq v_{1}, u_{2}=3, \quad v_{2}=5, \Longrightarrow u_{2} \neq v_{2}$

Note

Two nonzero vectors are equal if they have the same magnitude and the same direction. Any vector with zero magnitude is equal to the zero vector.

Vector \mathbf{u} and Vector V have same direction but different magnitude.
$\overrightarrow{\mathbf{u}} \neq \overrightarrow{\mathbf{v}}$

Vector \mathbf{U} and Vectorv have same magnitude but different direction.
$\overrightarrow{\mathbf{u}} \neq \overrightarrow{\mathbf{v}}$ $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathrm{v}}$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand vector analysis
c. Central Ideas:

- Dot pordect
- Properties of dot prodect
- Projection
- unit vector normal
d. Objectives: after the end of courses the student will be able to:

Find

- Dot product
- Angle between the vector
- projection
- Normal unit vector

2. Pre test: fill in the blanks within an appropriate word(s):

1-Two non zero vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are said to parallel if \qquad
2- Two non zero vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are said to \qquad if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\mathbf{0}$

3- Given $\overrightarrow{\mathrm{A}}=3 i-2 j+k$ and $\overrightarrow{\mathrm{B}}=m i+j-3 k$ the constant $(m)=$ \qquad if the vectors \vec{A} and \vec{B} are orthogonal

3-Dot Product

Definition Let $\vec{v}=(v 1, v 2, v 3)$ and $\overrightarrow{\boldsymbol{w}}=(w 1, w 2, w 3)$ be vectors in R^{3}.
The dot product of \vec{v} and $\overrightarrow{\boldsymbol{w}}$, denoted by $\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{w}}$, is given by:

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

Similarly, for vectors $\mathrm{v}=\left(v_{1}, v_{2}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$ in \mathbf{R}^{2}, thot product is: $\quad \vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}$
For vectors $\mathrm{v}=\boldsymbol{v}_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathrm{k}$ and $\mathrm{w}=w_{1} \mathbf{i}+w_{2} \mathbf{j}+w_{3} \mathrm{k}$ in component form, the dot product is still

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

Properties Of The Dot Product

a) $\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{u}}$ (commutative)
b) $(\vec{s} \vec{u}) \cdot \vec{v}=\mathbf{s}(\vec{u} \cdot \vec{v})$ (respects scalar multiples)
c) $\overrightarrow{\boldsymbol{u}} \cdot(\overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{w}})=\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{w}}$ (distributes over vector sums)
d) $\overrightarrow{\boldsymbol{0}} \cdot \overrightarrow{\boldsymbol{u}}=\mathbf{0}$
e) $\vec{u} \cdot \vec{v}=\mathbf{0} \Leftrightarrow \overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{0}}$ or $\overrightarrow{\boldsymbol{v}}=\overrightarrow{\mathbf{0}}$ or $\overrightarrow{\boldsymbol{u}} \perp \overrightarrow{\boldsymbol{v}}$
f) $s \vec{u} . k \vec{v}=s . k(\vec{u} \cdot \vec{v})$

Note

The associative law does not hold for the dot product of vectors Because for vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$, the dot product $\mathbf{u} \cdot \mathbf{v}$ is a scalar, and so $(u \cdot v) \cdot w$ is not defined since the left side of that dot product (the part in parentheses) is a scalar and not a vector.

Example

given $\vec{u}=(2,-2), \vec{v}=(5,8), \vec{w}=(-4,3)$ find each of the following:

1) $\vec{u} \cdot \vec{v}$
2) $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
3) $\vec{u} \cdot(2 \vec{v})$

Solution:

1) $\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{v}}=(2,-2) \cdot(5,8)=2 \times 5+(-2) \times 8=10-16=-6$
2) $(\vec{u} \cdot \vec{v}) \cdot \vec{w}=-6(-4,3)=(-6 x-4,-6 \times 3)$
3) $\vec{u} \cdot(2 \vec{v})=2(\vec{u} \cdot \vec{v})=2 x-6=-12$

The Dot Product Of i, jand k

$$
\begin{array}{rll}
\mathbf{i} \cdot \mathbf{i}=\mathbf{1} & , \mathbf{j} \cdot \mathbf{j}=\mathbf{1} & , \mathbf{k} \cdot \mathbf{k}=\mathbf{1} \\
\mathbf{i} \cdot \mathbf{j}=\mathbf{0} & , \mathbf{j} \cdot \mathbf{i}=\mathbf{0} & , \mathbf{k} \cdot \mathbf{i}=\mathbf{0} \\
\mathbf{i} \cdot \mathbf{k}=\mathbf{0} & , \mathbf{j} \cdot \mathbf{k}=\mathbf{0} & , \mathbf{k} \cdot \mathbf{j}=\mathbf{0}
\end{array}
$$

Define Projection let be \vec{A} and \vec{B} are vectors the projection of \vec{B} onto \vec{A} $\operatorname{proj}_{A} \overrightarrow{\mathrm{~B}}$

Is given by

$$
\operatorname{proj}_{A} \overrightarrow{\mathbf{B}}=\frac{\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{A}}|^{2}} \overrightarrow{\mathbf{A}}
$$

Note

The projection of $\underline{\overrightarrow{\mathbf{A}}}$ onto $\overrightarrow{\mathbf{B}} \boldsymbol{p r o j}_{A} \vec{B}$ is given by

$$
\operatorname{proj}_{B} \overrightarrow{\mathbf{A}}=\frac{\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{B}}|^{2}} \overrightarrow{\mathbf{B}}
$$

Example:

Determine the projection of vector $\vec{B}=(\mathbf{2 , 1 , - 1})$ onto vector $\vec{A}=(1,0,-2)$ Solution

$$
\operatorname{proj}_{A} \overrightarrow{\mathbf{B}}=\frac{\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}}{|\overrightarrow{\mathrm{~A}}|^{2}} \overrightarrow{\mathrm{~A}}
$$

$$
\begin{aligned}
& \vec{A} \cdot \overrightarrow{\mathrm{~B}}=4 \\
& |\vec{A}|=\sqrt{(1)^{2}+(0)^{2}+(-2)^{2}}=\sqrt{5} \\
& \quad \operatorname{proj}_{A} \overrightarrow{\mathrm{~B}}=\frac{4}{5}(i-2 k)
\end{aligned}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Theory for vector
c. Central Ideas:

- (Direction cosines)
- Direction angle
- Cross Product
- unit vector normal
d. Objectives: after the end of courses the student will be able to:

Find

- Direction cosines, Direction angle
- Angle between the vector
- Normal unit vector

2. Pre test: fill in the blanks within an appropriate word(s):

Q1- Determine the direction cosines and direction angle for $\overrightarrow{\boldsymbol{v}}=(2,1,-4)$
Q2- Fill in the following blanks
1- If $\overrightarrow{\boldsymbol{u}}=\mathbf{i}-\mathbf{2 j}+\mathbf{k}$ and $\overrightarrow{\boldsymbol{v}}=\mathbf{3 i}+\mathbf{j}-\mathbf{2 k}$ then $\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{u}}$
2- Two non zero vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are said to \qquad if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\mathbf{0}$

3- Given $\vec{A}=3 i-2 j+k$ and $\vec{B}=m i+j-3 k$ the constant $(m)=$ if the vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are orthogonal

(Direction cosines)

This application direction of the dot product requires that we be in three dimensional spaces unlike all the other application we have looked at to this point

Defection let $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ be a vector three dimensional space and θ is the angle a vector makes with the x axis, α is the angle a vector makes with the y axis, and β is the angle a vector makes with the z axis. These angles are called Direction angle and the cosines of these angle are called Direction cosines The formulas for the direction cosines are

$$
\begin{aligned}
& \cos \theta=\frac{\mathbf{v}_{1}}{\|v\|} \Rightarrow v_{1}=\|\mathbf{v}\| \cos \theta \\
& \cos \alpha=\frac{v_{2}}{\|v\|} \Rightarrow v_{2}=\|\mathbf{v}\| \cos \alpha \\
& \cos \beta=\frac{v_{3}}{\|v\|} \Rightarrow v_{3}=\|\mathbf{v}\| \cos \beta
\end{aligned}
$$

Note

For any vector \vec{v} in Cartesian three-space, the sum of the squares of the direction cosines is always equal to 1 .

$$
\cos ^{2} \theta+\cos ^{2} \alpha+\cos ^{2} \beta=1
$$

Example

If $\|v\|=5$ and $\theta=70^{\circ}, \alpha=85^{\circ}, \beta=20^{\circ}$ give the component form vector \vec{v}.

$$
\begin{aligned}
\vec{v} & =(\|v\| \cos \theta,\|v\| \cos \alpha,\|v\| \cos \beta) \\
& =(5 \cos 70,5 \cos 85,5 \cos 20)
\end{aligned}
$$

Example

Determine the direction cosines and direction angle for $\overrightarrow{\boldsymbol{v}}=(2,1,-4)$
Solution

$$
\begin{aligned}
& \|\vec{v}\|=\sqrt{4+1+16}=\sqrt{21} \\
& \cos \theta=\frac{2}{\sqrt{21}} \Rightarrow \theta=64.123 \\
& \cos \alpha=\frac{1}{\sqrt{21}} \Rightarrow \alpha=77.396 \\
& \cos \beta=\frac{-4}{\sqrt{21}} \Rightarrow \beta=150.794
\end{aligned}
$$

4-Cross Product:

Definition let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ be vectors in space, the cross product of $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ is the vector :

$$
\overrightarrow{\boldsymbol{u}} \times \vec{v}=\left(\mathbf{u}_{2} \mathbf{v}_{3}-\mathbf{u}_{3} \mathbf{v}_{2}, \mathbf{u}_{3} \mathbf{v}_{1}-\mathbf{u}_{1} \mathbf{v}_{3}, \mathbf{u}_{1} \mathbf{v}_{2}-\mathbf{u}_{2} \mathbf{v}_{1}\right)
$$

The cross product $\vec{u} \times \vec{v}$ of two nonzero vectors $\overrightarrow{\boldsymbol{u}}$ and \vec{v} is also a nonzero vector, it is perpendicular to both \vec{u} and \vec{v}.

We can now rewrite the definition for the cross product using these determinants:
a) The top row consists of the unit vectors in order $\overrightarrow{\boldsymbol{l}}, \vec{\jmath}, \overrightarrow{\boldsymbol{k}}$.
b) The second row consists of the coefficients $\overrightarrow{\boldsymbol{u}}$.
c) The third row consists of the coefficients $\overrightarrow{\boldsymbol{v}}$.

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \quad \leftarrow \\
& =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
\psi_{1} & v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ccc}
\mathbf{i} & \text { Put " } \mathbf{u} \text { " } \mathbf{~} \text { " in Row } 2 . & \mathbf{k} \text { in } 2 . \\
u_{1} & u_{2} & u_{3} \\
v_{1} & \psi_{2} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & \psi_{3}
\end{array}\right| \mathbf{k} \\
& =\left|\begin{array}{lll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{k} \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}
\end{aligned}
$$

Properties of the cross product:

If \vec{v}, \vec{u}, and \vec{w} are vectors and s is a scalar, then :

1. $\vec{v} \times \vec{u}=-\vec{u} \times \vec{v}$ (Anti-commutative)
2. $(s \vec{v}) \times \vec{u}=s(\vec{v} \times \vec{u})=\vec{v} \times(s \vec{u})$
3. $\vec{v} \times(\vec{u}+\vec{w})=\vec{v} \times \vec{u}+\vec{v} \times \vec{w} \quad$ (Distributive)
4. $(\vec{v}+\vec{u}) \times \vec{w}=\vec{v} \times \vec{w}+\vec{u} \times \vec{w}$
5. $\vec{v} \cdot(\vec{u} \times \vec{w})=(\vec{v} \times \vec{u}) \cdot \vec{w}=\vec{u} .(\vec{w} \times \vec{v})$
6. $\vec{v} \times(\vec{u} \times \vec{w}) \neq(\vec{v} \times(\vec{u}) \times \vec{w} \quad$ (Not associative)
7. $\vec{v} \times(\vec{u} \times \vec{w})=(\vec{v} \cdot \vec{w}) \vec{u}-(\vec{v} \cdot \vec{u}) \vec{w}$ (both sides of this identity are vectors)

Note

For any vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right), \vec{v}=\left(v_{1}, v_{2}, v_{3}\right), \vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$ in \mathbf{R}^{3} :
$\vec{u} \cdot(\vec{\rightharpoonup} \times \vec{w})=\left|\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|=u_{1}\left|\begin{array}{cc}v_{2} & v_{3} \\ w_{2} & w_{3}\end{array}\right|-u_{2}\left|\begin{array}{cc}v_{1} & v_{3} \\ w_{1} & w_{3}\end{array}\right|+u_{2}\left|\begin{array}{cc}v_{1} & v_{2} \\ w_{1} & w_{2}\end{array}\right|$

The Cross Product Of i, jand k

$\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad, \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad, \mathbf{k} \times \mathbf{i}=\mathbf{j}$
$\mathbf{i} \times \mathbf{i}=0 \quad, j \times j=0 \quad, k \times k=0$
$\mathbf{i} \times \mathbf{k}=-\mathbf{j} \quad, \mathbf{j} \times \mathbf{i}=-\mathbf{k}, \mathbf{k} \times \mathbf{j}=-\mathbf{i}$
to find the cross product of any pair of basis vectors, you travel around the circle. Thus, to get $i \times j$, you start at i, move to j and then on to k. If you go around the circle clockwise, the answer is positive, if you go counter-clockwise, it is negative. Thus, $\mathbf{j} \times k=i$, and so on, while $k \mathbf{x}=-i$, etc.

Example:

Given $\overrightarrow{\boldsymbol{u}}=\mathbf{i}-\mathbf{j} \mathbf{j}+\mathrm{k}$ and $\overrightarrow{\boldsymbol{v}}=3 \mathbf{i}+\mathbf{j}-\mathbf{2 k}$, find each of the following.
a. $\overrightarrow{\boldsymbol{u}} \mathbf{x v}$
b. $\vec{v} \times \vec{u}$
c. $\vec{v} \times \vec{v}$

Solution

$$
\begin{aligned}
\text { a. } \vec{u} \times v & =\left|\begin{array}{ccc}
i & j & k \\
1 & -2 & 1 \\
3 & 1 & -2
\end{array}\right| \\
& =\left|\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right| i-\left|\begin{array}{cc}
1 & 1 \\
3 & -2
\end{array}\right| j+\left|\begin{array}{rr}
1 & -2 \\
3 & 1
\end{array}\right| k \\
& =(4-1) i-(-2-3) j+(1+6) k=3 i+5 j+7 k
\end{aligned}
$$

b. $\vec{v} \times \vec{u}=\left|\begin{array}{ccc}i & j & k \\ 3 & 1 & -2 \\ 1 & -2 & 1\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{rr}
1 & -2 \\
-2 & 1
\end{array}\right| i-\left|\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right| j+\left|\begin{array}{cc}
3 & 1 \\
1 & -2
\end{array}\right| k \\
& =(1-4) i-(3+2) j+(-6-1) k=-3 i-5 j-7 k
\end{aligned}
$$

c. $\vec{v} \times \vec{v}=\left|\begin{array}{ccc}i & j & k \\ 3 & 1 & -2 \\ 3 & 1 & -2\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
1 & -2 \\
1 & -2
\end{array}\right| i-\left|\begin{array}{cc}
3 & -2 \\
3 & -2
\end{array}\right| j+\left|\begin{array}{cc}
3 & 1 \\
1 & 1
\end{array}\right| k \\
& =(-2+2) i-(-6+6) j+(3-3) k=0 i-0 j-0 k=0
\end{aligned}
$$

Example:

Given the vectors $\vec{v}=i-2 j+4 k$ and $\vec{w}=3 i+j-2 k$ find $\vec{v} \times \vec{w}$ Solution

$$
\begin{aligned}
\vec{v} \times \vec{w} & =\left|\begin{array}{ccc}
i & j & k \\
1 & -2 & 4 \\
3 & 1 & -2
\end{array}\right| \\
& =i(4-4)-j(-2-12)+k(1+6)=14 j+7 k \\
\vec{w} \times \vec{v} & =\left|\begin{array}{ccc}
i & j & k \\
3 & 1 & -2 \\
1 & -2 & 4
\end{array}\right|==i(4-4)-j(12+2)+k(-6-1)=-14 j-7 k
\end{aligned}
$$

Example:

Given the vectors $\vec{v}=j+6 k$ and $\vec{w}=i+j$ find $\vec{v} \times \overrightarrow{\boldsymbol{w}}$

Solution

$$
\vec{v} \times \vec{w}=\left|\begin{array}{lll}
i & j & k \\
0 & 1 & 6 \\
1 & 1 & 0
\end{array}\right|=\mathrm{i}(1.0-6)-j(0-6)+k(0-1)=-6 i+6 j-k
$$

Example:

Find $\vec{u} \times(\vec{v} \times \vec{w})$ for $\vec{u}=(1,2,4), \vec{v}=(2,2,0), \vec{w}=(1,3,0)$.
Solution:

$$
\begin{aligned}
& \text { Since } \vec{u} \cdot \vec{v}=6 \text { and } \vec{u} \cdot \vec{w}=7, \text { then } \\
& \begin{aligned}
\vec{u} \times(\vec{v} \times \vec{w}) & =(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w} \\
& =7(2,2,0)-6(1,3,0)=(14,14,0)-(6,18,0) \\
& =(8,-4,0)
\end{aligned}
\end{aligned}
$$

Note

Angle between Vectors

Let $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ be from $\mathrm{R}^{\mathbf{2}}$ or $\mathrm{R}^{\mathbf{3}}$ and let $\boldsymbol{\theta}$ be the angle between them. Then
The angle between two vectors can be found by using the dot product.

$$
\cos (\theta)=\frac{\vec{u} \cdot \vec{v}}{|u| \cdot|v|} \Rightarrow \theta=\cos ^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{|u| \cdot|v|}\right)
$$

The angle between two vectors can be found by using the cross product.

$$
\sin \theta=\frac{|\vec{v} \times \vec{u}|}{|u||v|} \Rightarrow \theta=\sin ^{-1}\left(\frac{|\vec{v} \times \vec{u}|}{|v||u|}\right)
$$

$\# \vec{u} \cdot \vec{v}$ is $\left\{\begin{array}{cc}\text { positive } & o \leq \theta<\frac{\pi}{2} \\ 0 & \theta=\frac{\pi}{2} \\ \text { negative } & \frac{\pi}{2}<\theta \leq \pi\end{array}\right.$

Example

What is the angle in degrees between $\overrightarrow{\boldsymbol{u}}=(1,1,1)$ and $\vec{v}=(2,1,0)$, Solution

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=1.2+1.1+1.0=3 \\
& |u|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \\
& |v|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{2^{2}+1^{2}+0^{2}}=\sqrt{5} \\
& \cos (\theta)=\frac{\overrightarrow{u \cdot v}}{|u| \cdot|v|}=\frac{3}{\sqrt{3} \sqrt{5}}=\frac{3}{\sqrt{15}} \Rightarrow \theta=\cos ^{-1}\left(\frac{3}{\sqrt{15}}\right)=39: 23^{\circ}
\end{aligned}
$$

Example:

Find the angle between $\overrightarrow{\boldsymbol{u}} .=\mathbf{2 i}+\mathbf{3 j} \mathbf{j} \boldsymbol{k} \boldsymbol{\varepsilon} \overrightarrow{\boldsymbol{v}}=\mathbf{i}+\mathbf{5 j}+\mathrm{k}$.

Solution:

$$
\begin{aligned}
& \overrightarrow{\vec{u} . \vec{v}=2 .(-1)+3.5+1.1=-2+15+1=14} \\
& \|\vec{u}\|=\sqrt{14},\|\vec{v}\|=\sqrt{27} \\
& \cos (\theta)=\frac{\vec{u} \cdot \vec{v}}{|u| \cdot|v|}=\frac{14}{\sqrt{14} \cdot \sqrt{27}}=\frac{\sqrt{14}}{3 \sqrt{3}} \\
& \therefore \theta=\cos ^{-1}\left(\frac{\sqrt{14}}{3 \sqrt{3}}\right)=43.3^{\circ} \simeq 44^{\circ}
\end{aligned}
$$

Example

Given $\overrightarrow{\boldsymbol{u}}=2 \mathrm{i}-3 \mathrm{j}+5 \mathrm{k}$ and $\overrightarrow{\boldsymbol{v}}=5 \mathrm{i}+3 \mathrm{j}-7 \mathrm{k}$, compute the angle between $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ Solution

$$
\begin{aligned}
& \cos \theta=\frac{\overrightarrow{u \cdot v}}{|u| \cdot|v|} \\
& \vec{u} \cdot \vec{v}=2 \times 5+(-3) \times 3+5 \times(-7)=-34 \\
& |u|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}=\sqrt{2^{2}+-3^{2}+5^{2}}=\sqrt{38} \\
& |v|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{5^{2}+3^{2}+-7^{2}}=\sqrt{83} \\
& \cos (\theta)=\frac{\overrightarrow{u \cdot v}}{|u| \cdot|v|}=\frac{-34}{\sqrt{38} \sqrt{83}}=\frac{-34}{\sqrt{3154}}
\end{aligned}
$$

Note

One of the application of cross product to find unit vector normal ($\overrightarrow{\mathbf{N}}$) on $\overrightarrow{\mathbf{A}}$ and \vec{B}

$$
\overrightarrow{\mathbf{N}}=\frac{\overrightarrow{\mathbf{A}} \mathbf{x} \overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{A}} \mathbf{x} \overrightarrow{\mathbf{B}}|}
$$

Example:
Find the normal unit vector perpendicular on \vec{A} and \vec{B} for

$$
\overrightarrow{\mathbf{A}}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \text { and } \overrightarrow{\mathbf{B}}=-\mathbf{j}+2 \mathbf{k}
$$

Solution

$$
\begin{aligned}
& \overrightarrow{\mathrm{N}}=\frac{\overrightarrow{\mathrm{A}} \times \vec{B}}{|\overrightarrow{\mathrm{~A}} \times \vec{B}|} \\
& \overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & 3 & -1 \\
0 & -1 & 2
\end{array}\right|=5 \mathrm{i}-4 \mathrm{j}-2 \mathrm{k} \\
& |\overrightarrow{\mathrm{~A}} \times \vec{B}|=\sqrt{(5)^{2}+(-4)^{2}+(-2)^{2}}=\sqrt{45} \\
& \qquad \vec{n}=\frac{5}{\sqrt{45}} i-\frac{4}{\sqrt{45}} j-\frac{2}{\sqrt{45}} k
\end{aligned}
$$

Parallel Vectors

Two nonzero vectors $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{u}}$ are parallel if there is some scalar c such that

$$
\vec{u}=\mathbf{c} \vec{v}
$$

Or
Two non-zero vectors \vec{v} and $\overrightarrow{\boldsymbol{u}}$ are parallel $\Leftrightarrow \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{u}}=\mathbf{0}$.

Example

Which of the following vectors is parallel to $\overrightarrow{\boldsymbol{w}}=(-6,8,2)$?
a. $\overrightarrow{\boldsymbol{u}}=(3,-4,-1)$
b. $\vec{v}=(12,-16,4)$

Solution

a. Because $\overrightarrow{\boldsymbol{u}}=(3,-4,-1)=\frac{1}{2}(-6,8,2)=-\frac{1}{2} \overrightarrow{\boldsymbol{w}}$, you can conclude that u is parallel to w.
OR

$$
\vec{w} \times \vec{u}=\left|\begin{array}{ccc}
i & j & k \\
-6 & 8 & 2 \\
3 & -4 & -1
\end{array}\right|=(8 x-1-2 x-4,2 \times 3--6 x-1,-6 x-4-8 \times 3)=(0, \quad 0, \quad 0)
$$

b. In this case, you want to find a scalar \boldsymbol{c} such that

$$
\begin{aligned}
& (12,-16,4)=c(-6,8,2) . \\
& 12=-6 \rightarrow c=-2 \\
& -16=8 \rightarrow c=-2 \\
& 4=2 \rightarrow c=2
\end{aligned}
$$

Because there is no \boldsymbol{c} for which the equation has a solution, the vectors are not parallel.

Orthogonal Vector

Two non-zero vectors \vec{v} and \vec{u} are orthogonal $\Leftrightarrow \overrightarrow{\boldsymbol{u}} \cdot \vec{v}=0$

Example

Show that vectors $\vec{v}=(1,-1,0)$ and $\overrightarrow{\boldsymbol{w}}=(2,2,4)$ are orthogonal,

Solution

$$
\vec{v} \cdot \vec{w}=1 * 2+-1 * 2+0 * 4=0
$$

Example

Determine whether the given vectors are orthogonal, parallel or neither:
(1) $\vec{u}=(-2,6,-4), \vec{v}=(4,-12,8)$.
(2) $\vec{u}=i-j+2 k \quad, \vec{v}=2 i-j+k$.
(3) $\vec{u}=(\mathbf{a}, \mathrm{b}, \mathrm{c}) \quad, \vec{v}=(-\mathrm{b}, \mathrm{a}, \mathbf{0})$

Solution

(1) $\vec{u}=(-2,6,-4), \vec{v}=(4,-12,8)$.

Because $\vec{v}=(4,-12,8)=-2(-2,6,-4)=2 \vec{u}$, you can conclude that \vec{v} is parallel to $\overrightarrow{\boldsymbol{u}}$
(2) conclude that \vec{u} is parallel to \vec{v}

$$
\vec{u} \cdot \vec{v}=2+1+2=5,
$$

$\overrightarrow{\boldsymbol{u}} \times \vec{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ 2 & -1 & 1\end{array}\right|=(-1 \times 1-2 \times-1, \quad 1 \times 1-2 \times 2, \quad 1 \times-1--1 \times 2)=(1,3,1)$
the vectors are neither orthogonal nor parallel.
(3) $\vec{u}=(\mathrm{a}, \mathrm{b}, \mathrm{c}) \quad, \vec{v}=(-\mathrm{b}, \mathrm{a}, \mathbf{0})$.
$\vec{u} \cdot \vec{v}=-a b+a b+0=0$, so the vectors are orthogonal.

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Theory for vector
c. Central Ideas:

- Parametric Equations
- Vector Equation
d. Objectives: after the end of courses the student will be able to:

Find

- Vector Equation
- Parametric Equations

Pre test
Q1- Find the parametric equation of the line passing through $p_{0}(1,3,2)$ parallel to $\mathbf{2 i} \mathbf{i} \mathbf{j}+\mathbf{3 k}$

Parametric Equations?

The parametric equations of a lineL in 3-space for a line passing through $p_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to $\mathbf{v}=\mathbf{a i}+\mathbf{b j}+\mathbf{c k}$:
is $x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t$
The above equation are called parametric equations for the line
To determine parametric equations of a line, we need

* a point on the line
* a vector parallel to the line

Vector Equation

The vector equation of the line is: $\overrightarrow{\boldsymbol{r}}=\overrightarrow{\boldsymbol{r}_{\mathbf{0}}}+\mathrm{t} \overrightarrow{\boldsymbol{v}}$
Where $\overrightarrow{\boldsymbol{r}_{0}}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ is a vector whose components are made of the point ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) on the line L and
$\overrightarrow{\boldsymbol{v}}=(\mathbf{a}, \mathbf{b}, \mathbf{c})$ are components of a vector that is parallel to the line L

Example:

Find the parametric equation of the line passing through $p_{0}(1,3,2)$ parallel to $2 \mathbf{i}-\mathbf{j}+3 \mathrm{k}$.
Solution:

The parametric equation is

$$
\begin{gathered}
x=1+2 t \\
y=3-t \\
z=2+3 t
\end{gathered}
$$

Example:
Find a vector equation and parametric equations for the line that passes through the point $(5,1,3)$ and is parallel to the vector $\vec{v}=i+4 j-2 k$.
Solution
Here $\overrightarrow{\boldsymbol{r}_{0}}=(5,1,3)=5 i+j+3 k$ and $\vec{v}=i+4 j-2 k$, so the vector

$$
\vec{r}=\overrightarrow{r_{0}}+t \vec{v}
$$

becomes

$$
\begin{aligned}
& \vec{r}=(5 i+j+3 k)+t(i+4 j-2 k) \\
& \vec{r}=(5+t) i+(1+4 t) j+(3-2 t) k
\end{aligned}
$$

Parametric equations are

$$
x=5+t, y=1+4 t, z=3-2 t
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Theory for vector
c. Central Ideas:

- Symmetric the Equations
- Plane of Equation
- lines either intersect or are parallel
d. Objectives: after the end of courses the student will be able to:

1- Find the relation between parametric equations form equations and symmetricthe Equations

2- Find the symmetric equation for line
3 - find the equation of a plane
4- Show that the lines either intersect or are parallel
Pre test
Q1:Find the equation of the plane with normal $\vec{n}=(1,2,7)$ which contains the point $\mathbf{P}_{\mathbf{0}}(\mathbf{5}, 3,4)$
symmetric the equations
Consider the parametric form equations for a line:
$L: x=x_{0}+a t \quad, y=y_{0}+b t \quad, z=z_{0}+c t$.
If a, b and c are all nonzero, we can solve each equation for t to get :

$$
\begin{aligned}
& \frac{x-x_{0}}{a}=t \\
& \frac{y-y_{0}}{b}=\mathbf{t} \\
& \frac{z-z_{0}}{c}=\mathbf{t}
\end{aligned}
$$

We called these three equation symmetric form of the system of equations for line L, If we set:

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}=\mathbf{t}
$$

If one or more of a, b and c is zero, we can still obtain symmetric equations. For example, if $\mathbf{a}=\mathbf{0}$, the symmetric equations are

$$
\mathbf{x}=\mathrm{x}_{0}, \frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}=\mathbf{t}
$$

Example:

Find the symmetric equation for line through point $(1,-5,6)$ and is parallel to vector (-1,2,-3)

Solution

$$
\frac{x-1}{-1}=\frac{y+5}{2}=\frac{z-6}{-3}
$$

Equations of Planes

The equation of the plane in 3 space, that passing through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the Plane and the non zero vector $\vec{n}=a i+b i+c k$
Perpendicular (orthogonal) to the plane (The vector $\overrightarrow{\boldsymbol{n}}$ is called normal Vector) is $a x+b y+c z=D$; where $D=a x_{0}+b y_{0}+c z_{0}$

Note

To find the equation of a plane in R^{3}, we need to know:

1. A point on the plane $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$.
2. A normal (perpendicular) vector to the plane.

Example:

Find the equation of plane through point $(\mathbf{1 , - 1 , 1})$ and with normal vector $\mathrm{i}+\mathrm{j}-\mathrm{k}$

Solution

Given point is ($\mathbf{1 , - 1 , 1 \text {) }}$
Here $\mathbf{a}=\mathbf{1 , b}=\mathbf{1 , c}=-\mathbf{1}$
We know that equation of plane is given by-:

$$
\begin{aligned}
& a x+b y+c z=D ; \text { where } D=a x_{0}+b y_{0}+c z_{0} \\
& x+y-z=1
\end{aligned}
$$

Example: .

Find the equation of the plane with normal $\vec{n}=(1,2,7)$ which contains the point $\mathrm{P}_{\mathbf{0}}(\mathbf{5}, 3,4)$

Solution

The equation of plane is
$x+2 y+7 z=39$

Example:

Determine the equation of the plane that contains the points

$$
P_{1}=(1,-2,0), P_{2}=(3,1,4), P_{3}=(0,-1,2)
$$

Solution

In order to write the equation of plane we need a point and a normal vector, We need to find a normal vector.

Step 1

First convert the three points into two vectors by subtracting one point from the other two

$$
\begin{gathered}
\overrightarrow{P_{1} P_{2}}=(3-1,1-(-2), 4-0)=(2,3,4) \\
\overrightarrow{P_{1} P_{3}}=(0-1,-1-(-2), 2-0)=(-1,1,2)
\end{gathered}
$$

Step 2

Find the cross product of the vectors found in Step 1. we know that the cross product of two vectors will be orthogonal to both of these vectors. Since both of these are in the plane any vector that is orthogonal to both of these will also be orthogonal to the plane. Therefore, we can use the cross product as the normal vector.
$\vec{n}=\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 4 \\ -1 & 1 & 2\end{array}\right|=2 \mathrm{i}-8 \mathrm{j}+5 \mathrm{k}$

Step 3

The coefficients a, b, and c of the planar equation are ($2-85$), then We can used any of the three points to find The equation of the plane > $2 x-2-8 y-16+5 z=0$
$2 x-8 y+5 z=18$
Example:
Find an equation of the plane which contains the points $P_{1}(-1,0,1), P_{2}(1,-2,1)$ and $P_{3}(2,0,-1)$.

Solution

Step 1
$\overrightarrow{P_{1} P_{2}}=(2,-2,0)$
$\overrightarrow{\boldsymbol{P}_{1} P_{3}}=(3,0,-2)$

Step 2

$\vec{n}=\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{ccc}i & j & k \\ 2 & -2 & 0 \\ 3 & 0 & -2\end{array}\right|=4 i+4 j+6 k$
Step 3

$$
\begin{aligned}
& \vec{n}=(4,4,6) \\
& 4 x+4+4 y+6 z-6=0 \\
& 4 x+4 y+6 z=2
\end{aligned}
$$

In two dimensions, two lines either intersect or are parallel; in three dimensions, lines that do not intersect might not be parallel.
Two lines that are not parallel and do not intersect are called skew lines.

Example:

Show that the lines
$\mathrm{L}_{1}: \mathrm{x}=\mathrm{t}_{1}-1, \mathrm{y}=\mathrm{t}_{1}+5, \mathrm{z}=1$
$\mathrm{L}_{2}: \mathrm{x}=\mathrm{t}_{2}-\mathbf{3}, \mathrm{y}=-\mathrm{t}_{2}+1, \mathrm{z}=\mathrm{t}_{2}+\mathbf{2}$
Intersect, and find the point of intersection .

Solution:

If they intersect, we can find a value of t_{1} and t_{2} that satisfy the equations

$$
\begin{align*}
& x_{0}=t_{1}-1=t_{2}-3-\cdots \\
& y_{0}=t_{1}+5=-t_{2}+1- \tag{2}\\
& z_{0}=1=t_{2}+2---- \tag{3}
\end{align*}
$$

from equation (3)
$1=t_{2}+2 \Rightarrow t_{2}=\mathbf{- 1}$
From equation (1) or (2)
$\mathbf{t}_{1}-\mathbf{1}=\mathbf{t}_{\mathbf{2}}-\mathbf{3}$
$\mathrm{t}_{1}-1=-1-3 \Rightarrow \mathrm{t}_{1}=-4+1=-3$
Then check whether the three sets of equations are satisfied by $\left(t_{2}, t_{1}\right)$

$$
\begin{aligned}
& x_{0}=t_{1}-1=t_{2}-3 \Rightarrow-3-1=-1-3 \quad \Rightarrow-4=-4 \\
& y_{0}=t_{1}+5=-t_{2}+1 \Rightarrow-3+5=-(-1)+1 \Rightarrow 2=2
\end{aligned}
$$

$z_{0}=1=t_{2}+2 \quad \Rightarrow 1=-1+2 \quad \Rightarrow 1=1$
The point of intersection $\left(x_{0}, y_{0}, z_{0}\right)=(-4,2,1)$

Example:

Let L_{1} and L_{2} be lines with parametric equations

$$
\begin{aligned}
& L_{1}: x=1+2 t_{1} \quad ; y=3+2 t_{1} \quad ; z=2-t_{1} \\
& L_{2}: x=2+t_{2} \quad ; y=6-t_{2} \quad ; z=-2+3 t_{2}
\end{aligned}
$$

Determine whether the lines are parallel, skew, or intersecting. If they intersect, find the point of intersection

Solution:

The direction vectors are $\vec{v}_{1}=(2 ; 2 ;-1)$ and $\overrightarrow{\boldsymbol{v}}_{2}=(1 ;-1 ; 3)$
$\vec{v}_{1} \neq c \vec{v}_{2}$
So these vectors are not parallel. Do they intersect
If there is an intersection point ($\mathrm{x}_{0} ; \mathrm{y}_{0} ; \mathrm{z}_{0}$), we will find it by solving the system of three equations in parameters t_{1} and t_{2} :

$$
\begin{equation*}
x_{0}=1+2 t_{1}=2+t_{2} \tag{1}
\end{equation*}
$$

$y_{0}=3+2 t_{1}=6-t_{2}$
$\mathrm{z}_{0}=2-\mathrm{t}_{1}=-2+3 \mathrm{t}_{2}$
solve the first two equation for $\mathbf{t}_{\mathbf{1}}, \mathrm{t}_{\mathbf{2}}$.
$\mathbf{1}+2 \mathrm{t}_{1}=\mathbf{2}+\mathrm{t}_{2}$
$3+2 t_{1}=6-t_{2}$
Subtract equation (2) from equation (1) we get
$-2=-4+2 \mathrm{t}_{2} \Rightarrow 2 \mathrm{t}_{2}=-2+4$
$t_{2}=1$
We can find t_{1} by substituting this value of $t_{\mathbf{2}}$ in either the first or second equation
$1+2 \mathrm{t}_{1}=2+\mathrm{t}_{2} \Rightarrow 1+2 \mathrm{t}_{1}=2+1$
$2 \mathrm{t}_{1}=2 \Rightarrow \mathrm{t}_{1}=1$
Then check whether the three sets of equations are satisfied by $\left(t_{2}, t_{1}\right)$
$\mathrm{x}_{0}=1+2 \mathrm{t}_{1}=2+\mathrm{t}_{2} \Rightarrow 1+2=2+1 \quad \Rightarrow 3=3$
$y_{0}=3+2 t_{1}=6-t_{2} \Longrightarrow 3+2=6-1 \Longrightarrow 5=5$
$\mathrm{z}_{0}=2-\mathrm{t}_{1}=-2+3 \mathrm{t}_{2} \Rightarrow 2-1=-2+3 \quad \Rightarrow 1=1$
The point of intersection $\left(x_{0}, y_{0}, z_{0}\right)=(3,5,1)$

Example:

Determine whether the lines
$L_{1}: x=1+2 t_{1} \quad ; y=3 t_{1} \quad ; z=2-t_{1}$
$\mathrm{L}_{2}: \mathrm{x}=-1+\mathrm{t}_{2} \quad ; \mathrm{y}=4+\mathrm{t}_{2} ; \mathrm{z}=1+3 \mathrm{t}_{2}$
parallel, skew or intersecting.
Solution
The direction vectors are $\vec{v}_{1}=(2,3,-1)$ and $\overrightarrow{\boldsymbol{v}}_{2}=(1,1,3)$
$\vec{v}_{1} \neq c \vec{v}_{2}$

So these vectors are not parallel . Do they intersect
If there is an intersection point $\left(\mathrm{x}_{0} ; \mathrm{y}_{\mathbf{0}} ; \mathrm{z}_{0}\right)$, we will find it by solving the system of three equations in parameters t_{1} and t_{2}
$\mathrm{x}_{0}=1+2 \mathrm{t}_{1}=\mathbf{- 1}+\mathrm{t}_{2}$
$y_{0}=3 t_{1}=4+t_{2}$
$\mathrm{z}_{0}=\mathbf{2}-\mathrm{t}_{1}=\mathbf{1}+\mathbf{3} \mathrm{t}_{2}$
Let us solve the first two equations.

$$
\begin{equation*}
1+2 t_{1}=-1+t_{2} \tag{1}
\end{equation*}
$$

$3 \mathrm{t}_{1}=4+\mathrm{t}_{2}$
subtract equation (2) from equation (1) we get
$1-\mathrm{t}_{1}=-\mathbf{5} \Rightarrow \mathrm{t}_{1}=6$
we can find t_{2} by substituting this value of t_{1} in either the first or second equation
$3 t_{1}=4+t_{2}$
3(6) $\quad=\mathbf{4}+\mathbf{t}_{2} \Rightarrow \mathbf{t}_{2}=18-4=14$
Then check whether the three sets of equations are satisfied by $\left(\mathbf{t}_{2}, \mathbf{t}_{1}\right)$
$\mathrm{x}_{0}=1+2 \mathrm{t}_{1}=\mathbf{- 1}+\mathrm{t}_{2} \Rightarrow 1+2(6)=-1+14 \Rightarrow 13=13$
$y_{0}=3 \mathrm{t}_{1}=4+\mathrm{t}_{2} \quad \Rightarrow \quad 3(6)=4+14 \quad \Rightarrow \quad 18=18$
$\mathrm{z}_{0}=2-\mathrm{t}_{1}=1+3 \mathrm{t}_{2} \quad \Rightarrow \quad 2-6=1+3(14) \quad \Rightarrow-4=43$
The solution does not satisfy the third equation. So these lines do not intersect, therefore, they are sk

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Theory for vector
c. Central Ideas:

- distance \boldsymbol{D} from point to the plane
- distance \boldsymbol{D} from point to the line
- distance D between two line
d. Objectives: after the end of courses the student will be able to:

1- Find the distance D from point to the plane
2- Find the distance d from the point P to the line
3- Find Distance between two lines

Pre test

Q1: Find the distance from the point $p(1,1,1)$ to the line $=\frac{x+3}{7}=\frac{y-1}{3}=\frac{z+4}{-2}$
Q2: Find the distance from the point $p(1,1,5)$ to the line $x-1=\frac{y-3}{-1}=\frac{z}{2}$

Distance between a Point and a Line

Let L be a line and let P be a point not on L. The distance d from P to L is the length of the line segment from P to L which is perpendicular to L, Pick a point P_{0} on L, and let w be the vector from P_{0} to P. If θ is the angle between w and v, then
$d=|\boldsymbol{w}| \sin \theta$.
$\because|\vec{v} \times \overrightarrow{\boldsymbol{w}}|=|\overrightarrow{\boldsymbol{v}}||\overrightarrow{\boldsymbol{w}}| \sin \theta$
$\therefore|\vec{w}| \sin \theta=\frac{|\vec{v} \times \vec{w}|}{|\vec{v}|} \Longrightarrow \mathbf{d}=\frac{|\vec{v} \times \vec{w}|}{|\vec{v}|}$

Example:

Find the distance d from the point $P=(1,1,1)$ to the line

$$
L: x=-3+7 t, y=1+3 t, z=-4-2 t
$$

Solution

The distance d from P to L :
$\mathrm{d}=\frac{|\vec{v} \times \overrightarrow{\boldsymbol{w}}|}{|\vec{v}|}$
$\vec{v}=(7,3,-2)$
$\vec{w}=\overrightarrow{P_{0} P}=(1-(-3), 1-1,1-(-4))=(4,0,5)$

$\vec{v} \times \overrightarrow{\boldsymbol{w}}=\left|\right.$| \mathbf{i} | j | |
| ---: | ---: | ---: |
| 7 | 3 | -2 |
| 4 | 0 | 5 |$|=15 \mathrm{i}-\mathbf{4 3 j}-\mathbf{1 2 k}$

$|\vec{v} \times \vec{w}|=\sqrt{15^{2}+-43^{2}+-12^{2}}=\sqrt{2218}$

$$
\begin{aligned}
& |\vec{v}|=\sqrt{7^{2}+3^{2}+-2^{2}}=\sqrt{49+9+4}=\sqrt{62} \\
& \therefore d=\frac{|\vec{v} \times \vec{w}|}{|\vec{v}|}=\frac{\sqrt{2218}}{\sqrt{62}}=5.98
\end{aligned}
$$

Example:

Find the distance d from the point $P=(1,4,-3)$ to the line
$L: x=2+t, y=-1-t, z=3 t$
Solution
The distance d from P to L :
$\mathbf{d}=\frac{|\vec{v} \times \vec{w}|}{|\vec{v}|}$
$\vec{v}=(1,-1,3)$
$\vec{w}=\overrightarrow{P_{0} P}=(1-2,4-(-1), \quad-3-0)=(-1,5,-3)$
$\vec{v} \times \vec{w}=\left|\begin{array}{ccc}i & j & k \\ 1 & -1 & 3 \\ -1 & 5 & -3\end{array}\right|=-12 i-6 j+6 k$
$|\vec{v} \times \vec{w}|=\sqrt{(-12)^{2}+-6^{2}+6^{2}}=\sqrt{216}$
$|\vec{v}|=\sqrt{1^{2}+-1^{2}+3^{2}}=\sqrt{1+1+9}=\sqrt{11}$
$\therefore \mathrm{d}=\frac{|\vec{v} \times \vec{w}|}{|\vec{v}|}=\frac{\sqrt{216}}{\sqrt{11}}=4.43$

Distance hetween twn lines

Let P_{1} be a point and $\overrightarrow{v_{1}}$ be a direction vector for a line L_{1} and let P_{2} be point and $\overrightarrow{\boldsymbol{v}_{2}}$ be a direction vector for a line L_{2}.

The distance between two parallel line

 If $\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}=0$ OR $\overrightarrow{\boldsymbol{v}_{1}}=c \overrightarrow{\boldsymbol{v}_{2}} \Rightarrow \mathrm{~L}_{1} \| \mathrm{L}_{2}$$$
\mathbf{d}=\frac{\left|\overrightarrow{v_{1}} \times \overrightarrow{P_{1} P_{2}}\right|}{\left|\overrightarrow{v_{1}}\right|}
$$

The distance between two intersection line

$$
\text { If } \overrightarrow{v_{1}} \times \overrightarrow{v_{2}} \neq 0 \& \overrightarrow{d=0} \overrightarrow{P_{1} P_{2}}\left(\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right)=0 \Rightarrow \mathbf{L}_{1} \cap \mathbf{L}_{2}
$$

The distance between two skew line
If $\overrightarrow{\boldsymbol{v}_{1}} \times \overrightarrow{\boldsymbol{v}_{2}} \neq 0 \& \overrightarrow{P_{1} P_{2}} \cdot\left(\overrightarrow{\boldsymbol{v}_{1}} \times \overrightarrow{\boldsymbol{v}_{2}}\right) \neq 0 \Rightarrow$ the two lines are skew

$$
\mathbf{d}=\frac{\left.\mid \overrightarrow{P_{1} P_{2} \cdot} \cdot \overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right) \mid}{\left|\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right|}
$$

Example:

Find the distance d between the two lines:

1. $L_{1}: x=1+2 t, \quad y=2+t, \quad z=-3+3 t$
$L_{2}: x=2+10 t, y=-2+5 t, \quad z=3+15 t$
2. $L_{1}: x=1+2 t, \quad y=2+2 t, \quad z=-3+3 t$
$L_{2}: x=2+t, \quad y=-2-t, \quad z=3+7 t$
3. $\mathrm{L}_{1}: \mathrm{x}=1+\mathrm{t}, \quad \mathrm{y}=1-2 \mathrm{t}, \quad \mathrm{z}=8+\mathrm{t}$
$\mathrm{L}_{2}: \mathrm{x}=3 \mathrm{t}, \quad \mathrm{y}=\mathbf{2 + 5 t}, \quad \mathrm{z}=8-8 \mathrm{t}$

Solution

1. L1: $x=1+2 t, \quad y=2+t, \quad z=-3+3 t$

L2: $\mathrm{x}=2+10 t, \mathrm{y}=-2+5 \mathrm{t}, \quad \mathrm{z}=3+15 \mathrm{t}$
The direction vectors are $\vec{v}_{1}=(2,1,3)$ and $\vec{v}_{2}=(10,5$, 15) $\vec{v}_{1}=5 \vec{v}_{2}$

So these vectors are parallel

$$
\begin{aligned}
& d=\frac{\left|\overrightarrow{v_{1}} \times \overrightarrow{1_{1} P_{2}}\right|}{\left|\vec{v}_{1}\right|} \\
& \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=(2-1,-2-2, \quad 3-(-3))=(1,-4,6) \\
& \overrightarrow{v_{1}} \times \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\left|\begin{array}{rrr}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & 1 & 3 \\
1 & -4 & 6
\end{array}\right|=18 \mathrm{i}-9 \mathrm{j}-9 \mathrm{k} \\
& \left|\overrightarrow{v_{1}} \times \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\right|=\sqrt{18^{2}+-9^{2}+-9^{2}}=9 \sqrt{6} \\
& \left|\overrightarrow{v_{1}}\right|=\sqrt{2^{2}+1^{2}+3^{2}}=\sqrt{14} \\
& \mathrm{~d}=\frac{9 \sqrt{6}}{\sqrt{14}}=5.9
\end{aligned}
$$

2. $L_{1}: x=1+2 t, \quad y=2+2 t, \quad z=-3+3 t$
$L_{2}: x=2+t, \quad y=-2-t, \quad z=3+7 t$
The direction vectors are $\vec{v}_{1}=(2,2,3)$ and $\vec{v}_{2}=(1,-1,7)$ $\vec{v}_{1} \neq \boldsymbol{c} \vec{v}_{2}$
So these vectors are not parallel

$$
\begin{aligned}
& \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=(2-1,-2-2,3-(-3))=(1,-4,6) \\
& \overrightarrow{v_{1}} \times \overrightarrow{v_{2}}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & 2 & 3 \\
1 & -1 & 7
\end{array}\right|=17 \mathrm{i}-11 \mathrm{j}-4 \mathrm{k} \\
& \overrightarrow{P_{1} P_{2}} \cdot\left(\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right)=1 \times 17+(-4 \times 11)+6 \times(-4)=17-44-24=37 \neq 0 \\
& \overrightarrow{v_{1}} \times \overrightarrow{v_{2}} \neq 0 \& \overrightarrow{P_{1} P_{2}} \cdot\left(\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right) \neq 0 \Rightarrow \text { the two lines are skew } \\
& \mathrm{d}=\frac{\left.\mid \overrightarrow{P_{1} P_{2}} \cdot \overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right) \mid}{\left|\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right|=\sqrt{17^{2}+-11^{2}+-4^{2}}=\sqrt{426} \\
& \therefore \mathrm{~d}=\frac{|37|}{\sqrt{426}}=\frac{37}{\sqrt{426}}=1.79
\end{aligned}
$$

3. $L_{1}: x=1+t, \quad y=1-2 t, \quad z=8+t$

$$
L_{2}: x=3 t, \quad y=2+5 t, \quad z=8-8 t
$$

The direction vectors are $\vec{v}_{1}=(1,-2,1)$ and $\vec{v}_{2}=(3,5,-8)$
$\vec{v}_{1} \neq c \vec{v}_{2}$
So these vectors are not parallel
$\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=(0-1,2-1,8-8)=(-1,1,0)$
$\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}=\left|\begin{array}{rrr}i & j & k \\ 1 & -2 & 1 \\ 3 & 5 & -8\end{array}\right|=11 i+11 j+11 k$
$\overrightarrow{P_{1} P_{2}} \cdot\left(\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right)=-1 \times 11+1 \times 11+0 \times 11=0$
$\overrightarrow{\mathbf{v}_{1}} \times \overrightarrow{\mathbf{v}_{2}} \neq 0 \& \overrightarrow{\mathbf{P}_{1} \mathbf{P}_{2}} \cdot\left(\overrightarrow{\mathbf{v}_{1}} \times \overrightarrow{\mathbf{v}_{2}}\right)=0 \Rightarrow \mathbf{L}_{1} \cap L_{2}$
$\therefore \mathbf{d}=\mathbf{0}$

Distance between Point and Plane

The distance D between a point $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and the plane; $a x+$ $b y+c z+d=0$ is

$$
\mathrm{D}=\frac{\left|a x_{1}+b y_{1}+c Z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Example:

Find the distance D from point $(2,4,-5)$ to the plane
$5 x-3 y+z-10=0$
Solution

$$
\begin{aligned}
& \mathrm{D}=\frac{\left|a x_{1}+b y_{1}+c Z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}= \\
& \mathrm{D}=\frac{|5 x-3 y+z-10|}{\sqrt{5^{2}+-3^{2}+1^{2}}}=\frac{|5(2)-3(4)+(-5)-10|}{\sqrt{35}}=\frac{|-17|}{\sqrt{35}}=\frac{17}{\sqrt{35}}=2.87
\end{aligned}
$$

Example:

Find the distance \boldsymbol{D} from point $(1,6,-1)$ to the plane
$2 \mathrm{x}+\mathrm{y}-2 \mathrm{z}-19=0$
Solution

$$
\begin{aligned}
& \mathrm{D}=\frac{\left|a x_{1}+b y_{1}+c Z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& \mathrm{D}=\frac{|2 \mathrm{x}+\mathrm{y}-2 \mathrm{z}-19|}{\sqrt{2^{2}+1^{2}+-2^{2}}}=\frac{|2(1)+6-2(-1)-19|}{\sqrt{9}}=\frac{|-9|}{\sqrt{9}}=\frac{9}{3}=3
\end{aligned}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Partial Derivatives
c. Central Ideas:

- Partial Derivatives first and second order
- Plane of Equation
- lines either intersect or are parallel
d. Objectives: after the end of courses the student will be able to:

1-Find Partial Derivatives first and second order

2- Find formula for Del operation

Pre test

Q1: Compute grad $\overrightarrow{\mathbf{F}}$ and $\operatorname{div} \overrightarrow{\mathbf{F}}$ for $\overrightarrow{\mathbf{F}}=4 x-y^{2} e^{3 x z}$

Partial Derivatives

a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). The partial derivative is denoted by:

The partial derivative of f with respect to $x \cdot \frac{\partial f}{\partial x}$
The partial derivative of f with respect to $y \cdot \frac{\partial f}{\partial y}$
The partial derivative of f with respect to $z \cdot \frac{\partial f}{\partial z}$

Example:

Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$, if $\quad f(x, y)=x^{2}+3 x y+y-z$?

Sol.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x+3 y+0-0=2 x+3 y \\
& \frac{\partial f}{\partial y}=0+3 x+1-0=3 x+1 \\
& \frac{\partial f}{\partial z}=0+0+0-1=-1
\end{aligned}
$$

Example: Find $\frac{\partial f}{\partial y}$ if $f(x, y)=y \sin x y$?

Sol.

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =y \frac{\partial(\sin x y)}{\partial y}+\sin x y \frac{\partial(y)}{\partial y} \\
& =x y \cos x y+\sin x y
\end{aligned}
$$

Second-Order Partial Derivatives

When we differentiate a function $f(x, y)$ twice, we produce its second-order derivatives. These derivatives are usually denoted by:
$\frac{\partial^{2} f}{\partial x^{2}} \quad$ The second-order partial derivative of f with respect to x.
$\frac{\partial^{2} f}{\partial y^{2}} \quad$ The second-order partial derivative of f with respect to y.
$\frac{\partial^{2} f}{\partial z^{2}} \quad$ The second-order partial derivative of f with respect to z.

Example:

If $f(x, y)=x^{2} y^{3}+x y^{2}-z^{2}$, find $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}, \frac{\partial^{2} f}{\partial z^{2}}$?

Sol.

$\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial\left(x^{2} y^{3}+x y^{2}-z^{2}\right)}{\partial x}\right)=\frac{\partial\left(2 x y^{3}+y^{2}\right)}{\partial x}=2 y^{3}$
$\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial\left(x^{2} y^{3}+x y^{2}-z^{2}\right)}{\partial y}\right)=\frac{\partial\left(3 x^{2} y^{2}+2 x y\right)}{\partial y}=6 x^{2} y+2 x$
$\frac{\partial^{2} f}{\partial z^{2}}=\frac{\partial}{\partial z}\left(\frac{\partial\left(x^{2} y^{3}+x y^{2}-z^{2}\right)}{\partial z}\right)=\frac{\partial(-2 z)}{\partial z}=-2$

Formulas for Del Operation

The vector differential operator $\vec{\nabla}$ called "del" , is defined as:

$$
\vec{\nabla}=\frac{\partial}{\partial x} \vec{l}+\frac{\partial}{\partial y} \vec{\jmath}+\frac{\partial}{\partial z} \vec{k}
$$

If a scalar function $\mathrm{f}(x, y, z)$ and vector $\vec{A}=A_{1} \vec{\imath}+A_{2} \vec{\jmath}+A_{3} \vec{k}$ have partial derivatives, we can define the following:

1.Gradient Field

The gradient of the function $\mathrm{f}(x, y, z)$ is define by:

$$
\operatorname{grad} f=\vec{\nabla} f=\frac{\partial f}{\partial x} \vec{\imath}+\frac{\partial f}{\partial y} \vec{\jmath}+\frac{\partial f}{\partial z} \vec{k}
$$

Vector field.

2. Divergence Field

The divergence (flux density) of \vec{A} is define by:

$$
\operatorname{div} \vec{A}=\vec{\nabla} \cdot \vec{A}=\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z} \quad \text { Scalar field. }
$$

3.Curl Field

The curl of the vector \vec{A} is define by:

$$
\begin{aligned}
\operatorname{Curl} \vec{A}= & \vec{\nabla} \times \vec{A}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{1} & A_{2} & A_{3}
\end{array}\right| \\
& =\left(\frac{\partial A_{3}}{\partial y}-\frac{\partial A_{2}}{\partial z}\right) \vec{\imath}-\left(\frac{\partial A_{3}}{\partial x}-\frac{\partial A_{1}}{\partial z}\right) \vec{\jmath}+\left(\frac{\partial A_{2}}{\partial x}-\frac{\partial A_{1}}{\partial y}\right) \vec{k} \quad \text { Vector field. }
\end{aligned}
$$

4.Laplacian Field

> Scalar field.

$$
\vec{\nabla} \cdot(\vec{\nabla} f)=\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

Example:

Find the gradient field of the following functions:
a) $f(x, y, z)=x y+x^{2}-2 z$
b) $\emptyset(x, y, z)=2 x+3 y^{2}+\sin z$

Sol.

a) $f(x, y, z)=x y+x^{2}-2 z$

$$
\vec{\nabla} f(x, y, z)=\frac{\partial f}{\partial x} \vec{\imath}+\frac{\partial f}{\partial y} \vec{\jmath}+\frac{\partial f}{\partial z} \vec{k}
$$

$$
=(y+2 x) \vec{\imath}+(x) \vec{\jmath}-2 \vec{k}
$$

b) $\varnothing(x, y, z)=2 x+3 y^{2}+\sin z$

$$
\begin{aligned}
\vec{\nabla} \emptyset(x, y, z) & =\frac{\partial \emptyset}{\partial x} \vec{\imath}+\frac{\partial \emptyset}{\partial y} \vec{\jmath}+\frac{\partial \emptyset}{\partial z} \vec{k} \\
& =2 \vec{\imath}+(6 y) \vec{j}+(\cos z) \vec{k}
\end{aligned}
$$

Example:

Find the divergence field of the following vectors:
a) $\vec{R}=(4 x z) \vec{\imath}+(3 x) \vec{j}+(5 y z) \vec{k}$
b) $\vec{A}=\left(e^{x}\right) \vec{\imath}+(\ln x y) \vec{j}+\left(e^{x y z}\right) \vec{k}$

Sol.

a) $\vec{R}=(4 x z) \vec{\imath}+(3 x) \vec{\jmath}+(5 y z) \vec{k}$

$$
\vec{\nabla} \cdot \vec{R}=\frac{\partial R_{1}}{\partial x}+\frac{\partial R_{2}}{\partial y}+\frac{\partial R_{3}}{\partial z}
$$

$$
=4 z+0+5 y=4 z+5 y
$$

b) $\vec{A}=\left(e^{x}\right) \vec{\imath}+(\ln x y) \vec{j}+\left(e^{x y z}\right) \vec{k}$

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{A} & =\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z} \\
& =e^{x}+\frac{x}{x y}+x y e^{x y z}=e^{x}+\frac{1}{y}+x y e^{x y z}
\end{aligned}
$$

Example

Find the Curl field of the following vectors:
a) $\vec{A}=\left(x^{2}-y\right) \vec{\imath}+(4 z) \vec{j}+\left(x^{2}\right) \vec{k}$
b) $\vec{B}=\left(3 x^{2}\right) \vec{\imath}+(2 z) \vec{j}+(\sin x) \vec{k}$

Sol.

a) $\vec{A}=\left(x^{2}-y\right) \vec{\imath}+(4 z) \vec{j}+\left(x^{2}\right) \vec{k}$

$$
\begin{aligned}
\vec{\nabla} \times \vec{A} & =\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\left(x^{2}-y\right) & 4 z & x^{2}
\end{array}\right| \\
& =\left(\frac{\partial\left(x^{2}\right)}{\partial y}-\frac{\partial(4 z)}{\partial z}\right) \vec{\imath}-\left(\frac{\partial\left(x^{2}\right)}{\partial x}-\frac{\partial\left(x^{2}-y\right)}{\partial z}\right) \vec{\jmath}+\left(\frac{\partial(4 z)}{\partial x}-\frac{\partial\left(x^{2}-y\right)}{\partial y}\right) \vec{k} \\
& =(0-4) \vec{\imath}-(2 x-0) \vec{\jmath}+(0+1) \vec{k} \\
& =-4 \vec{\imath}-(2 x) \vec{\jmath}+\vec{k}
\end{aligned}
$$

b) $\vec{B}=\left(3 x^{2}\right) \vec{\imath}+(2 z) \vec{j}+(\sin x) \vec{k}$

$$
\begin{aligned}
\vec{\nabla} \times \vec{B} & =\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 x^{2} & 2 z & \sin x
\end{array}\right| \\
& =\left(\frac{\partial(\sin x)}{\partial y}-\frac{\partial(2 z)}{\partial z}\right) \vec{\imath}-\left(\frac{\partial(\sin x)}{\partial x}-\frac{\partial\left(3 x^{2}\right)}{\partial z}\right) \vec{\jmath}+\left(\frac{\partial(2 z)}{\partial x}-\frac{\partial\left(3 x^{2}\right)}{\partial y}\right) \vec{k} \\
& =(0-2) \vec{\imath}-(\cos x-0) \vec{\jmath}+(0-0) \vec{k} \\
& =-2 \vec{\imath}-(\cos x) \vec{\jmath}
\end{aligned}
$$

Example:

Find the laplacian field of the function $f(x, y, z)=2 x^{2} y-x z^{3}$?
Sol.

$$
\begin{aligned}
\nabla^{2} f & =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial\left(2 x^{2} y-x z^{3}\right)}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial\left(2 x^{2} y-x z^{3}\right)}{\partial y}\right)+\frac{\partial}{\partial z}\left(\frac{\partial\left(2 x^{2} y-x z^{3}\right)}{\partial z}\right) \\
& =\frac{\partial\left(4 x y-z^{3}\right)}{\partial x}+\frac{\partial\left(2 x^{2}\right)}{\partial y}+\frac{\partial\left(-3 x z^{2}\right)}{\partial z} \\
& =(4 y)+0+(-6 x z)=4 y-6 x z
\end{aligned}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand polar coordinate system
c. Central Ideas:

- polar coordinate system
- draw the point in polarcoordinate
- convert the polar coordinate in cartisan or from cartisan in polar coordinate
d. Objectives: after the end of courses the student will be able to:

1- convert the point in polar or in cartisan coordinate
2- draw the point in polar coordinate

Pre test
Q1: Find the Cartesian coordinates of the point with the following polar coordinates: $\left(6, \frac{\pi}{6}\right)$
Q2: Find the polar coordinates of the point with the following Cartesian coordinates: $(2,2)$
Q3 : draw the point ($4, \frac{\pi}{2}$)

Polar Coordinate

The polar coordinate system is a two-dimensional coordinate system in which each point P on a plane is determined by a distance r from a fixed point O that is called the pole (or origin) and an angle θ (in degrees or radians)from a fixed direction.
The point P is represented by the ordered pair (r, θ) and (r, θ)are called polar coordinates.
The polar coordinate pair (r, θ) species a point in 2D space as follows:

1. Start at the origin, facing in the direction of the polar axis, and rotate by angle θ. Positive values of θ are usually interpreted to mean counterclockwise rotation ,with negative values indicating clockwise rotation.
2. Now move forward from the origin a distance of r units.

Note
In rectangular coordinate system, each point has unique coordinates but in polar coordinate system a point has infinitely many coordinates.

For example, if we wished to plot the point P with polar coordinates ($4, \frac{5 \pi}{6}$) we'd start at the pole ,move out along the polar axis 4 units, then rotate $\frac{5 \pi}{6}$ radians counter-clockwise.

If $\mathrm{r}<0$, we begin by moving in the opposite direction on the polar axis from the pole. For example, to plot $\mathrm{Q}\left(-3.5, \frac{\pi}{4}\right)$ we have

If we interpret the angle first, we rotate $\frac{\pi}{4}$ radians, then move back through the pole 3.5 units.

Here we are locating a point 3.5 units away from the pole on the terminal side of $\frac{5 \pi}{4}$, not $\frac{\pi}{4}$.

As you may have guessed, $\theta<0$ means the rotation away from the polar axis is clockwise instead of counter-clockwise. Hence, to plot R ($3.5, \frac{-3 \pi}{4}$) we have the following.

Points in Polar Coordinates

\$ $\mathrm{O}=(0, \theta)$ for all θ (This is so because for any θ the point that is distance 0 away from the origin along the line L is the origin).

$(\mathrm{r}, \theta)=(\mathrm{r}, \theta+2 k \pi)$ for all integers k .

$(-\mathrm{r}, \theta)=(\mathrm{r}, \theta+\pi)$.

Example:

Plotting Points Using Polar Coordinates
a. $\left(3, \frac{5 \pi}{3}\right)$
b. $\left(2,-\frac{\pi}{4}\right)$
c. $(3,0)$
d. $\left(-2, \frac{\pi}{4}\right)$

Solution

(a)

(b)

(c)

(d)

Converting from Polar Coordinates to Cartesian Coordinates

If P is a point with polar coordinates (r, θ) the Cartesian coordinates (x, y) of P is given by:

$$
x=r \cos \theta \quad y=r \sin \theta
$$

Note

If $\mathrm{r}=0$, then, regardless of θ, the a point P with Cartesian coordinates are $(0,0)$

Example

Find the Cartesian coordinates of the points with the following polar coordinates:
(a) $\left(6, \frac{\pi}{6}\right)$
(b) $\left(-4,-\frac{\pi}{4}\right)$

Solution:
(a)
$\mathrm{x}=\mathrm{r} \cos \theta=6 \cos \left(\frac{\pi}{6}\right)=6 \frac{\sqrt{3}}{2}=3 \sqrt{3}$
$y=r \sin \theta=6 \sin \left(\frac{\pi}{6}\right)=6 \frac{1}{2}=3$
The rectangular (Cartesian) coordinates of the point ($6, \frac{\pi}{6}$) are $(3 \sqrt{3}, 3)$

(b)
$x=r \cos \theta=-4 \cos \left(-\frac{\pi}{4}\right)=-4 \frac{1}{\sqrt{2}}=-2 \sqrt{2}$
$y=r \sin \theta=-4 \sin \left(-\frac{\pi}{4}\right)=-4\left(-\frac{1}{\sqrt{2}}\right)=2 \sqrt{2}$
The rectangular (Cartesian) coordinates of the point $\left(-4,-\frac{\pi}{4}\right)$ are $(-2 \sqrt{2}, 2 \sqrt{2})$

Convert from Cartesian Coordinates to Polar Coordinates

If P is a point with Cartesian coordinates (x, y) the polar coordinates (r, θ) of P is given by:

$$
\begin{gathered}
\mathrm{r}^{2}=x^{2}+y^{2} \Rightarrow \mathrm{r}=\sqrt{x^{2}+y^{2}} \\
\tan \theta=\frac{y}{x} \Rightarrow \theta=\tan ^{-1}\left(\frac{y}{x}\right)
\end{gathered}
$$

$$
\mathrm{r}=\sqrt{x^{2}+y^{2}} \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Polar Translating Cartesian

Steps for Converting from Rectangular to Polar Coordinates

Step 1: Always plot the point (x, y) first
STEP 2: If $x=0$ or $y=0$, use your illustration to find (r, θ).
STEP 3: If $x \neq 0$ and $y \neq 0$, then $r=\sqrt{x^{2}+y^{2}}$.
Step 4: To find θ, first determine the quadrant that the point lies in.

$$
\text { Quadrant I: } \theta=\tan ^{-1} \frac{y}{x} \quad \text { Quadrant II: } \theta=\pi+\tan ^{-1} \frac{y}{x}
$$

Quadrant III: $\theta=\pi+\tan ^{-1} \frac{y}{x} \quad$ Quadrant IV: $\theta=\tan ^{-1} \frac{y}{x}$

Example

Find the polar coordinates of the points with the following Cartesian coordinates:
a) $(2,2)$
b) (-1,1)
c) $(1,-1)$
d) $(-2,-2 \sqrt{3})$

Solution:

a) $\quad(\mathrm{x}, \mathrm{y})=(2,2)$
$r=\sqrt{x^{2}+y^{2}}$
$r=\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$
$\tan (\theta)=\frac{y}{x}$
$\theta=\tan ^{-1}\left(\frac{2}{2}\right)=\frac{\pi}{4}$
$\because \mathbf{x}>\mathbf{0}, \mathrm{y}>\mathbf{0} \Rightarrow$ the first quadrant
$\therefore(r, \theta)=\left(2 \sqrt{2}, \frac{\pi}{4}\right)$
b) $(x, y)=(-1,1)$
$\mathrm{r}=\sqrt{x^{2}+y^{2}}$
$\mathrm{r}=\sqrt{-1^{2}+1^{2}}=\sqrt{2}$
$\tan (\theta)=\frac{y}{x}$
$\theta=\tan ^{-1}\left(\frac{1}{-1}\right)=-\frac{\pi}{4}$
$\because \mathbf{x}<0, \mathrm{y}>0 \Rightarrow$ the second quadrant, $\frac{\pi}{2}<\theta \leq \pi$
$\Longrightarrow \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
$\therefore(\mathbf{r}, \theta)=\left(\sqrt{2}, \frac{3 \pi}{4}\right)$
c) $(x, y)=(1,-1)$
$\mathrm{r}=\sqrt{x^{2}+y^{2}}$
$r=\sqrt{1^{2}+-1^{2}}=\sqrt{2}$
$\tan (\theta)=\frac{y}{x}$
$\theta=\tan ^{-1}\left(\frac{1}{-1}\right)=-\frac{\pi}{4}$
$\because \mathbf{x}>\mathbf{0} \Rightarrow$ the fourth quadrant,$\theta=-\frac{\pi}{4}$
$\therefore(r, \theta)=\left(\sqrt{2},-\frac{\pi}{4}\right)=\left(\sqrt{2}, \frac{7 \pi}{4}\right)$
d) $(x, y)=(-2,-2 \sqrt{3})$
$\mathrm{r}=\sqrt{x^{2}+y^{2}}$
$r=\sqrt{-2^{2}+(-2 \sqrt{3})^{2}}=\sqrt{4+12}=4$
$\boldsymbol{\operatorname { t a n }}(\theta)=\frac{-2 \sqrt{3}}{-2}$
$\theta=\boldsymbol{\operatorname { t a n }}^{-1}(\sqrt{3})=\frac{\pi}{3}$
$\because \mathbf{x}<\mathbf{0}, \mathrm{y}<0 \Rightarrow$ the third quadrant $\theta=\left(\pi+\frac{\pi}{3}\right)=\frac{4 \pi}{3}$
$\therefore(r, \theta)=\left(4, \frac{4 \pi}{3}\right)$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Partial Derivatives
c. Central Ideas:

- Test Polar Equations for Symmetry
- Graph of a polar equation
- Steps for Sket ching Polar Equations
d. Objectives: after the end of courses the student will be able to:

Graph of a polar equation

Pre test
Q1: Graph the polar equations: $r=3 \cos 2 \theta$

Test Polar Equations for Symmetry

In polar coordinates, the symmetry tests for polar graphs:

1. Symmetry about the x -axis: the points (r, θ) and $(\mathrm{r},-\theta)$ are symmetric with respect to the polar axis (the x-axis).
2. Symmetry about the y-axis: The points (r, θ) and $(-\mathrm{r},-\theta)$ are symmetric with respect to the line $\theta=\frac{\pi}{2}$ (the y-axis).
3. Symmetry about the origin: The points (r, θ) and $(-\mathrm{r}, \theta)$ are symmetric with respect to the pole (the origin).

Graph of a polar equation

Polar equation is an equation whose variables are r and θ.
The graphof a polar equation is the set of all points whose polar coordinates satisfy the equation.

Special Polar Graphs

1- Circles

The graphs of

$$
\mathrm{r}=\mathrm{a} \cos \theta, \quad \mathrm{r}=\mathrm{a} \sin \theta, \quad \mathrm{a} \neq 0
$$

are called circles .

$r=a \cos (\theta)$
Circle

$r=a \sin (\theta)$
Circle

Example

Sketch the graph of the polar equation $r=6 \sin \theta$.
Solution:

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$
$r=6 \sin \theta$	0	4	6	4

2-Rose_curves:

The graphs of

$$
r=a \cos n \theta, \quad r=a \sin n \theta, \quad a \neq 0
$$

are called rose curves. If n is even, the rose has $2 n$ petals. If n is odd, the rose has n petals.

$r=a \cos (n \theta)$
Rose curve

$r=a \cos (n \theta)$
Rose curve

$r=a \sin (n \theta)$
Rose curve

Rose curve

Steps for Sketching Polar Equations-Roses

Step 1

Identify the number of "petals".
-If n is even, then there are $2 n$ petals.
-If n is odd, then there are n petals.

Step 2

Determine the length of each petal.
-The length of each petal is $|a|$ units.

Step 3

Determine all angles where an endpoint of a petal lies.
-If the equation is of the form $r=a \sin n \theta$, then the endpoints occur for angles on the interval $[0,2 \pi)$
-If the equation is of the form $r=a \cos n \theta$, then the endpoints occur for angles on the interval $[0,2 \pi)$

- Note that when n is odd, it is only necessary to consider angles on the interval $[0, \pi)$. A complete graph is obtained on this interval because the graph will completely traverse itself on the interval $[\pi, 2 \pi)$.

Step 4

Substitute each angle determined in Step 3 back into the original equation to obtain the appropriate values of r for each angle. The ordered pairs obtained represent the endpoints of the rose petals.
Plot these points on the graph.

Step 5

Determine angles where the graph passes through the pole. These angles serve as a guide when sketching the width of a petal.
-If the equation is of the form $r=a \sin n \theta$, then the graph passes through the pole when $\sin n \theta=0$.
-If the equation is of the form $r=a \cos n \theta$, then the graph passes through the pole when $\cos n \theta=0$.

Step 6

Draw each petal to complete the graph

Example

Graph the polar equations: $\mathbf{r}=2 \cos 3 \theta$.

Solution:

Step 1

$\mathrm{n}=3$ then then there are 3 petals.

Step 2

The length of each petal is 2 units.

Step 3

$$
\begin{aligned}
& r=2 \cos 3 \theta \\
& 2=2 \cos 3 \theta \\
& 1=\cos 3 \theta \\
& \cos ^{-1}(1)=3 \theta \\
& 0=3 \theta \Rightarrow \theta=0 \\
& \therefore 2=2 \cos 3(0)
\end{aligned}
$$

Rotate petals : $\frac{(2 \pi) 360}{\text { number of petals }}=\frac{360}{3}=\frac{2 \pi}{3}$

$0 \leq \theta \leq \frac{\pi}{6}$

$0 \leq \theta \leq \frac{\pi}{3}$

Example

Graph the polar equations: $\mathbf{r}=3 \cos 2 \theta$.

Solution:

$(\mathrm{r},-\theta) \Rightarrow \mathrm{r}=3 \cos 2(-\theta) \Longrightarrow \mathrm{r}=3 \cos 2(\theta)$
x -axis symmetry: yes
$(-\mathrm{r},-\theta) \Rightarrow-\mathrm{r}=3 \cos 2(-\theta) \Rightarrow-\mathrm{r}=3 \cos 2(\theta) \Rightarrow \mathrm{r}=-3 \cos 2(\theta)$
y -axis symmetry: no
$(-\mathrm{r}, \theta) \Rightarrow-\mathrm{r}=3 \cos 2(\theta) \Rightarrow-\mathrm{r}=3 \cos 2(\theta) \Rightarrow \mathrm{r}=-3 \cos 2(\theta)$
symmetry with respect to the origin :no

Step 1
$\mathrm{n}=2$ then then there $\operatorname{are}(2 * \mathrm{n}=2 * 2=4) 4$ petals.

Step 2

The length of each petal is 3 units.
Step 3

$$
\begin{aligned}
& r=3 \cos 2 \theta \\
& 3=3 \cos 2 \theta \\
& 1=\cos 2 \theta \\
& \cos ^{-1}(1)=2 \theta \\
& 0=2 \theta \Rightarrow \theta=0 \\
& \therefore 3=3 \cos 2(0)
\end{aligned}
$$

Rotate petals : $\frac{(2 \pi) 360}{\text { number of petals }}=\frac{360}{4}=\frac{\pi}{2}$

3-Lemniscates

The graphs of

$$
r^{2}=a^{2} \sin 2 \theta, \quad r^{2}=a^{2} \cos 2 \theta, \quad a \neq 0
$$

are called Lemniscates.

Lemniscate

$r^{2}=a^{2} \cos (2 \theta)$
Lemniscate

Example

Graph the polar equations: $r^{2}=4 \sin 2 \theta$.

Solution:

$(\mathrm{r},-\theta) \Rightarrow \mathrm{r}^{2}=4 \sin 2(-\theta) \Rightarrow \mathrm{r}^{2}=-4 \sin 2(\theta)$
x -axis symmetry: no
$(-\mathrm{r},-\theta) \Rightarrow(-\mathrm{r})^{2}=4 \sin 2(-\theta) \Rightarrow \mathrm{r}^{2}=-4 \sin 2(\theta)$
y -axis symmetry: no
$(-\mathrm{r}, \theta) \Rightarrow(-\mathrm{r})^{2}=4 \sin 2(-\theta) \Rightarrow \mathrm{r}^{2}=4 \sin 2(\theta)$
symmetry with respect to the origin :yes

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$r=2 \sqrt{\sin 2 \theta}$	0	1.86	2	1.86	0

4-Limacons_(Snails)

The graphs of

$$
\begin{gathered}
r=a+b \cos \theta, \quad r=a-b \cos \theta \\
r=a+b \sin \theta, \quad r=a-b \sin \theta, \quad a>0, b>0
\end{gathered}
$$

Are called Limacons the ratio $\frac{a}{b}$ determines a Limacons shape

$\frac{a}{b}<1$
Limaçon with inner loop

$\frac{a}{b}=1$
Cardioid (heart-shaped)

$1<\frac{a}{b}<2$
Dimpled limaçon

$$
\begin{aligned}
& \frac{a}{b} \geq 2 \\
& \text { Convex limaçon }
\end{aligned}
$$

$$
\mathrm{r}=\mathrm{a} \pm \mathrm{b} \sin \theta
$$

$\frac{a}{b}<1$
Limaçon with inner loop

$\frac{a}{b}=1$
Cardioid (heart-shaped)

$1<\frac{a}{b}<2$
Dimpled limaçon

$\frac{a}{b} \geq 2$
Convex limaçon

Steps for Sketching Polar Equations (Limacons)

Step 1

Identify the general shape using the ratio $\left|\frac{a}{b}\right|$.
-If $\left|\frac{a}{b}\right|=1$, then the graph is a cardioid.
-If $\left|\frac{a}{b}\right|<1$, then the graph is a limacon with an inner loop that intersects the pole.
-If $1<\left|\frac{a}{b}\right|<2$, then the graph is a limacon with a dimple .
\cdot-If $\left|\frac{a}{b}\right| \geq 2$, then the graph is a limacon with no inner loop and no dimple.

Step 2

Determine the symmetry.
-If the equation is of the form $r=a+b \sin \theta$, then the graph must be symmetric about the line $\theta=\frac{\pi}{2}$.
-If the equation is of the form $r=a+b \cos \theta$, then the graph must be symmetric about the polar axis.

Plot the points corresponding to the quadrant angles $\theta=0, \theta=\frac{\pi}{2}, \theta=\pi$, and $\theta=\frac{3 \pi}{2}$.

Step 4

If necessary, plot a few more points until symmetry can be used to complete the graph.

Example

Identify the symmetries of the curve $\mathrm{r}=2+2 \cos \theta$ and then sketch the graph.

Solution:

Step 1
the ratio $\left|\frac{a}{b}\right|=1 \Longrightarrow$ the graph is a cardioid
Step 2
then the graph must be symmetric about the polar axis
Step 3
$\mathrm{a}+\mathrm{b}=2+2=4 \Rightarrow$ stretches on x -axis
$\mathrm{a}=2 \Longrightarrow$ stretches on y - axis

θ	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$r=2+2 \cos \theta$	4	2	0	2	4

Example

Identify the symmetries of the curve $r=1-2 \cos \theta$ and then sketch the graph.

Solution:

$(\mathrm{r},-\theta) \Longrightarrow \mathrm{r}=1-2 \cos (-\theta) \Longrightarrow \mathrm{r}=1-2 \cos \theta$
x-axis symmetry: yes
$(-\mathrm{r},-\theta) \Rightarrow-\mathrm{r}=1-2 \cos (-\theta) \Rightarrow-\mathrm{r}=1-2 \cos (\theta) \Longrightarrow \mathrm{r}=-1+2 \cos (\theta)$
y -axis symmetry: no
$(-\mathrm{r}, \theta) \Rightarrow-\mathrm{r}=1-2 \cos \theta \Rightarrow \mathrm{r}=-1+2 \cos (\theta)$
symmetry with respect to the origin :no

Step 1

the ratio $\left|\frac{a}{b}\right|=0.5 \Rightarrow$ then the graph is a limacon with an inner loop that intersects the pole.
Step 2
then the graph must be symmetric about the polar axis
Step 3
$\mathrm{a}+\mathrm{b}=1+2=3 \Rightarrow$ stretches on x - axis
$\mathrm{a}=2 \Rightarrow$ stretches on y - axis
$\mathrm{a}-\mathrm{b}=1-2=-1 \Rightarrow$ lower point

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$\mathrm{r}=1-2 \cos \theta$	-1	0	1	2	$1+\sqrt{3}$	3

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand polar coordinate
c. Central Ideas:

Areas in Polar Coordinates

d. Objectives: after the end of courses the student will be able to:

1-Find Areas in Polar Coordinates

Pre test

Q1: Find the area of the region that lies inside $r=3+2 \sin \theta$ and outside the circle $r=2$

Areas in Polar Coordinates

1. If $\mathrm{f}(\theta)$ be nonnegative continuous function on $[\alpha, \beta]$, then the are A anclosed by polar curve $\mathrm{r}=\mathrm{f}(\theta)$ and lines (rays) $\theta=\alpha$ and $\theta=\beta$ is

$$
\mathrm{A}=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{\alpha}^{\beta}[\mathrm{f}(\theta)]^{2} \mathrm{~d} \theta
$$

2. Let R be the region enclosed by nonnegative continuous functions $\mathrm{f}(\theta)$ and $\mathrm{g}(\theta)$ on $[\alpha, \beta]$, and the lines $\theta=\alpha$ and $\theta=\beta$ is, then the area A of the region R is

$$
\mathrm{A}=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{\alpha}^{\beta}\left|f^{2}(\theta)-g^{2}(\theta)\right| \mathrm{d} \theta
$$

Example:

Find the area in the first quadrant that lies within the curve $r=1+\cos \theta$.

Solution

the graph of polar equation is cardioid

the area that lies between the rays $\theta=0, \frac{\pi}{2}$
$\mathrm{A}=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} r^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(1+\cos \theta)^{2} \mathrm{~d} \theta$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\left(1+2 \cos \theta+\left[\frac{1+\cos 2 \theta}{2}\right]\right) \mathrm{d} \theta$
$=\frac{1}{2}\left(\theta+2 \sin \theta+\frac{1}{2}\left(\theta+\left.\frac{1}{2} \sin 2 \theta\right|_{0} ^{\frac{\pi}{2}}\right.\right.$
$=\frac{1}{2}\left[\frac{\pi}{2}+2 \sin \frac{\pi}{2}+\frac{1}{2}\left(\frac{\pi}{2}+\frac{1}{2} \sin 2 \frac{\pi}{2}\right)-\left(0+2 \sin 0+\frac{1}{2}\left(0+\frac{1}{2} \sin 0\right)\right)\right]$
$\left.\left.=\frac{1}{2}\left[\frac{\pi}{2}+2+\frac{\pi}{4}+0\right)-(0+0+0)\right)\right]=\frac{\pi}{4}+1+\frac{\pi}{8}=3 \frac{\pi}{8}+1$

Example:

Find the area enclosed by one leaf of the 4-leafed rose $r=\cos (2 \theta)$.

Solution

The leaf pointing east is formed by the curve $r=\cos (2 \theta)$ between two angles for which
$\mathrm{r}=0$.
$0=\cos (2 \theta)$
$\operatorname{Cos}^{-1}(0)=\frac{\pi}{2}$
$2 \theta=\frac{\pi}{2} \Longrightarrow \theta=\frac{\pi}{4}$
$\therefore \theta= \pm \frac{\pi}{4}$

$\mathrm{A}=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} r^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}(\cos 2 \theta)^{2} \mathrm{~d} \theta$
$=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathrm{~d} \theta=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{4}(1+\cos 4 \theta) \mathrm{d} \theta$
$=\frac{\theta}{4}+\left.\frac{1}{16} \sin 4 \theta\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}=\frac{\pi}{16}-\left(-\frac{\pi}{16}\right)+\frac{1}{16} \sin \pi-\frac{1}{16} \sin (-\pi)=\frac{\pi}{8}$

Example:

Consider the polar curves $r=6 \sin \theta$ and $r=2+2 \sin \theta 0 \leq \theta \leq 2 \pi$.
(a) Find all points of intersection of the two curves.
(b) Graph the two curves and indicate their points of intersection.
(c) Find the area inside the first curve and outside the second.

Solution

(a) Begin by solving the equations simultaneously.

$$
6 \sin \theta=2+2 \sin \theta
$$

$6 \sin \theta-2 \sin \theta=2$
$4 \sin \theta=2 \Rightarrow \sin \theta=\frac{1}{2}$
$\theta=\sin ^{-1}\left(\frac{1}{2}\right) \Longrightarrow \theta=\frac{\pi}{6}$
the two polar graphs intersect at $(r, \theta)=\left(3, \frac{\pi}{6}\right),\left(3,5 \frac{\pi}{6}\right),(0,0)$
(b)

(c) The area is given by the following integral.

$$
\begin{aligned}
& A=\frac{1}{2} \int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}} r^{2} d \theta=\int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}}\left[(6 \sin \theta)^{2}-(2+2 \sin \theta)^{2}\right] d \theta \\
& =\frac{1}{2} \int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}}\left[36 \sin ^{2} \theta-\left(4+8 \sin \theta+4 \sin ^{2} \theta\right)\right] d \theta \\
& =\frac{1}{2} \int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}}\left[36 \sin ^{2} \theta-4-8 \sin \theta-4 \sin ^{2} \theta\right] d \theta \\
& =\int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}}\left[16 \sin ^{2} \theta-2-4 \sin \theta\right] d \theta \\
& =\int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}}\left[16 \frac{(1-\cos 2 \theta)}{2}-2-4 \sin \theta\right] d \theta=\int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}}[8-8 \cos 2 \theta-2-4 \sin \theta] d \theta \\
& =\int_{\frac{\pi}{6}}^{5 \frac{\pi}{6}}[6-8 \cos 2 \theta-4 \sin \theta] d \theta=6 \theta-4 \sin 2 \theta+\left.4 \cos \theta\right|_{\frac{\pi}{6}} ^{5 \frac{\pi}{6}} \\
& =6\left(5 \frac{\pi}{6}\right)-4 \sin 2\left(5 \frac{\pi}{6}\right)+4 \cos 5 \frac{\pi}{6}-\left[6\left(\frac{\pi}{6}\right)-4 \sin 2\left(\frac{\pi}{6}\right)+4 \cos \frac{\pi}{6}\right]=4 \pi
\end{aligned}
$$

Example:

Find the area Outside $r=1+\cos \theta$ in side $r=\sqrt{3} \sin \theta$.

Solution

$1+\cos \theta=\sqrt{3} \sin \theta$
$1+2 \cos \theta+\cos ^{2} \theta=3 \sin ^{2} \theta$
$1+2 \cos \theta+\cos ^{2} \theta=3\left(1-\cos ^{2} \theta\right)$
$4 \cos ^{2} \theta+2 \cos \theta-2=0$
$2 \cos ^{2} \theta+\cos \theta-1=0$
$(2 \cos \theta-1)(\cos \theta+1)=0$
$\cos \theta=\frac{1}{2} \Rightarrow \cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{3}$

$\cos \theta=-1 \Rightarrow \cos ^{-1}(-1)=\pi \Rightarrow \theta=\pi$

$$
\mathrm{A}=\frac{1}{2} \int_{\frac{\pi}{3}}^{\pi} r^{2} \mathrm{~d} \theta
$$

$=\frac{1}{2} \int \frac{\pi}{3}\left[(\sqrt{3} \sin \theta)^{2}-(1+\cos)^{2}\right] d \theta$
$=\frac{1}{2} \frac{1}{3}\left(3 \sin ^{2} \theta-1-2 \cos \theta-\cos ^{2} \theta\right) \mathrm{d} \theta$
$=\frac{1}{2} \int \frac{\pi}{3}\left[\frac{3}{2}(1-\cos 2 \theta)-1-2 \cos \theta-\frac{1}{2}(1+\cos 2 \theta)\right] \mathrm{d} \theta$
$\left.\left.=\frac{1}{2} \int_{\frac{\pi}{3}}^{\pi}-2 \cos \theta-2 \cos 2 \theta\right)\right] d \theta$
$=\frac{1}{2}\left[-2 \sin \theta-\left.\sin 2 \theta\right|_{\frac{\pi}{3}}=\frac{1}{2}\left[2 \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right]=\frac{3 \sqrt{3}}{2}\right.$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand type of coordinate
c. Central Ideas:

- cylindricasl coordinate
- spherical coordinate
d. Objectives: after the end of course sylinrical coordinate the student will be able to:
convert from cartisain to cylindricasl coordinate or to cylindricasl coordinate

Pre test
Q1: Given $p(r=6, \theta=120, z=-3)$ and $q(x=5, y=-\sqrt{3}, z=4)$
Find the length and a unit vector along \vec{A} directed from a point p and q .
Q2:Convert the points from rectangular to spherical coordinates.
a) $(1,-1,-\sqrt{2})$

Cylindrical Coordinate System

The cylindrical coordinate system basically is a combination of the polar coordinate system xy - plane with an additional z - coordinates vertically.
In the cylindrical coordinate system, a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$; whose Cartesian Coordinate is ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) ; is assigned by the ordered triple ($\mathrm{r}, \boldsymbol{\theta}, \mathrm{z}$),
where $(\mathrm{r}, \boldsymbol{\theta})$ is the polar coordinate of (x, y); the vertical projection along z - axis of P onto $x y$ - plane.
Thus, the transformation from the Cartesian coordinates to the cylindrical coordinates is given by
$\mathrm{x}=\mathrm{r} \cos \theta$
$y=r \sin \theta$
Z $=\mathrm{Z}$

Where $0 \leq \mathrm{r}<\infty ; 0 ; 0 \leq \theta \leq 2 \pi ;-\infty<\mathrm{z}<\infty$

Example:

Convert from cylindrical coordinates $\left(2,2 \frac{\pi}{3}, 1\right)$ to rectangular coordinates.

Solution

To find its rectangular coordinates, we use the formula

$$
\begin{aligned}
& x=r \cos \theta \Rightarrow x=2 \cos \left(2 \frac{\pi}{3}\right)=2\left(\frac{-1}{2}\right)=-1 \\
& y=r \sin \theta \Rightarrow y=2 \sin \left(2 \frac{\pi}{3}\right)=2\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3} \\
& \text { The point is }(-1, \sqrt{3}, 1)
\end{aligned}
$$

Note

To convert from rectangular coordinates to cylindrical coordinates.

$$
\begin{aligned}
& \mathrm{r}=\sqrt{x^{2}+y^{2}} \\
& \left.\theta=\tan ^{-1}\left(\frac{y}{x}\right)\right) \\
& \mathrm{z}=\mathrm{z}
\end{aligned}
$$

Example:

Convert the point ($-1,1, \sqrt{2}$) from Cartesian to cylindrical coordinates.

Solution

$$
\begin{aligned}
& \quad \mathrm{r}=\sqrt{x^{2}+y^{2} \Rightarrow} \mathrm{r}=\sqrt{-1^{2}+1^{2}}=\sqrt{2} \\
& \tan \theta=\frac{y}{x} \Rightarrow \theta=\tan ^{-1}\left(\frac{1}{-1}\right)=-\frac{\pi}{4}=3 \frac{\pi}{4} \\
& \mathrm{z}=\sqrt{2} \\
& \text { Thus }(-1,1, \sqrt{2})=\left(\sqrt{2}, 3 \frac{\pi}{4}, \sqrt{2}\right)
\end{aligned}
$$

Spherical Coordinate System

In the spherical coordinate system, a point $P(x, y, z)$, whose Cartesian coordinates are $(\mathrm{x}, \mathrm{y}, \mathrm{z})$; is described by an ordered triple (ρ, θ, ϕ).

- ϕ : Angle from positive $\mathrm{z}-$ axis to vector $\overrightarrow{O P}$.
- Where $0 \leq \rho<\infty ; 0 ; 0 \leq \theta \leq 2 \pi ; 0<\phi<\pi$.

Note

To transformation from the Cartesian coordinates to the Spherical coordinates isgiven by

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \Phi=\cos ^{-1}\left(\frac{z}{\rho}\right)
\end{aligned}
$$

Example:

Convert the points from rectangular to spherical coordinates.
b) $(1,-1,-\sqrt{2})$
c) $(0,1,-1)$
d) $(-1,1, \sqrt{6})$

Solution

a)

$$
\begin{aligned}
& \rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+-1^{2}+-\sqrt{2}^{2}}=2 \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{-1}{1}\right)=-\frac{\pi}{4}
\end{aligned}
$$

$\cos ^{-1}\left(\frac{z}{\rho}\right)=\cos ^{-1}\left(\frac{-\sqrt{2}}{2}\right)=-\frac{\pi}{4} \quad, \Phi=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
the point is $\left(2,-\frac{\pi}{4}, \frac{3 \pi}{4}\right)$ in rectangular coordinates
b)
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{0^{2}+-1^{2}+-1^{2}}=2$
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{1}{0}\right)=\frac{\pi}{2}$
$\cos ^{-1}\left(\frac{z}{\rho}\right)=\cos ^{-1}\left(\frac{-1}{2}\right)=\frac{\pi}{3} \quad, \Phi=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
the point is $\left(2, \frac{\pi}{2}, \frac{2 \pi}{3}\right)$ in rectangular coordinates
c)
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{-1^{2}+1^{2}+\sqrt{6}^{2}}=2 \sqrt{2}$
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{1}{-1}\right)=-\frac{\pi}{4}, \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
$\Phi=\cos ^{-1}\left(\frac{z}{\rho}\right)=\cos ^{-1}\left(\frac{\sqrt{6}}{2 \sqrt{2}}\right)=\frac{\pi}{6}$
the point is $\left(2 \sqrt{2}, \frac{3 \pi}{4}, \frac{\pi}{6}\right)$ in rectangular coordinates

Note

To transformation from the Spherical coordinates to the Cartesian coordinates is given by $x=\rho \sin \phi \cos \theta$ $y=\rho \sin \phi \sin \theta$ $\mathrm{z}=\rho \cos \phi$

Example:

Convert the point ($4, \frac{\pi}{4}, \frac{\pi}{6}$) from spherical to rectangular coordinates.

Solution

$x=\rho \sin \phi \cos \theta=4 \sin \frac{\pi}{6} \cos \frac{\pi}{4}=\sqrt{2}$
$y=\rho \sin \phi \sin \theta=4 \sin \frac{\pi}{6} \sin \frac{\pi}{4}=\sqrt{2}$
$\mathrm{z}=\rho \cos \phi=4 \cos \frac{\pi}{6}=2 \sqrt{3}$
The point is $(\sqrt{2}, \sqrt{2}, 2 \sqrt{3})$ in rectangular coordinates.

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand complex number
c. Central Ideas:
complex number
complex conjugate
Complex Arithmetic
square Roots of Complex Numbers.
d. Objectives: after the end of courses the student will be able to:

1-Find complex conjugate
2- find Complex Arithmetic
3- find square Roots of Complex Numbers.

Pre test
Q1: Solve the complex equation $m^{2}-7 m+9 n i=n^{2} i+20 i-12$
Q2: Find the value of the following $(1+i)^{-8}$

Complex Numbers

Definitions.
Let $i 2=-1$.
$\therefore i=\sqrt{-1}$
Complex numbers are often denoted by z.
Just as R is the set of real numbers, C is the set of complex numbers.If z is a complex number, z is of the form
$z=x+i y \in \mathrm{C}$, for some $x, y \in R$.
e.g. $3+4 i$ is a complex number.
$z=x+i y$
\uparrow
real part imaginary part.
If $z=x+i y, x, y \in \mathrm{R}$,
the real part of $z=_(z)=\operatorname{Re}(z)=x$
the imaginary part of $z=_(z)=\operatorname{Im}(z)=y$.
eg. $z=3+4 i$
$\operatorname{Re}(z)=3$
$\operatorname{Im}(z)=4$.
If $z=x+i y$, then z (" z bar") is given by
$z=x-i y$
and is called the complex conjugate of z.
eg.If $z=3+4 i$, then $z=3-4 i$.
Example. Solve $x 2-2 x+3=0$.
complex Arithmetic.
Addition/Subraction.
Example 1. $(2+3 i)+(4+i)=6+4 i$.
Example 2. $(8-3 i)-(-2+4 i)=10-7 i$.
Multiplication/Division.
Example 1. $(2+3 i)(1+2 i)=2+4 i+3 i-6=-4+7 i$
Example 2. $(3-2 i)(3+2 i)=9-(2 i) 2=9+4=13$
\therefore when we multiply two complex conjugates, we get a real number.
Example 3. $2+3 i$

```
1+4i=2+3i
1+4i
\times 1-4i
1-4i=(2+3i)(1-4i)
(1+4i)(1-4i)=2-8i+3i-12i2
1-(4i)2= 14-5i
17
(realising the denominator)
```

Theorem. If two complex numbers are equal then their real parts are equal and their imaginary parts are equal, i.e., if $a+i b=c+i d$ where $a, b, d \in \mathrm{R}$, then $a=c$ and $b=d$.
Example 1. Find x, y if $(3+4 i) 2-2(x-i y)=x+i y$.
Left hand side (LHS) $=9-16+24 i-2 x+i 2 y$
$=-7-2 x+i(24+2 y)$
$\therefore-7-2 x=x$
$3 x=-7$
$x=-7$
3
\& $24+2 y=y$
$y=-24$
Solving simultaneously,
$6 y=60$
$y=10$
$\& \therefore x=-4$.
square Roots of Complex Numbers.
Example 1. Find the square root of $35-12 i$.
Let
Example 2. Find the roots of $z 2-(1-i) z+7 i-4=0$ in the form $a+i b$.
$z=$
$(1-i) \pm$
$\overline{(1-i) 2}-4(1)(7 i-4)$
2
=
$(1-i) \pm$
$\sqrt[{\sqrt{ }}]{1-1-2 i}-28 i+16$
2
=
$(1-i) \pm$
$\sqrt{ }$
$16-30 i$
2
From beside,
=
$(1-i) \pm(5-3 i)$
2
=
$1-i+5-3 i$
2
or
$1-i-(5-3 i)$
2
$=3-2 i$ or $-2+i$.
$\sqrt{ }$
$16-30 i=(a+i b)$
$16-30 i=a 2-b 2+i(2 a b)$
$a_{2}-b_{2}=16$
$2 a b=-30$
$a b=-15$
$a=5 \& b=-3$
or $a=-5 \& b=3$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand complex number
c. Central Ideas:
complex number
complex conjugate
Complex Arithmetic
square Roots of Complex Numbers.
d. Objectives: after the end of courses the student will be able to:

1-Find complex conjugate
2- find Complex Arithmetic
3- find square Roots of Complex Numbers.

Pre test
Q1: Solve the complex equation $m^{2}-7 m+9 n i=n^{2} i+20 i-12$
Q2: Find the value of the following $(1+i)^{-8}$

Product of Complex Numbers.

The triangle $O Q R$ is constructed similar to $_A O P$. A is the point $(1,0)$.
Multiplication by $\boldsymbol{i}, \mathbf{- 1}, \mathbf{- i}$.
Multiplication by i, rotation 90 ((anticlockwise).
Multiplication by -1 , rotation 180 . anticlockwise.
Multiplication by - i, rotation 270 。 anticlockwise
Geometric Representation of Locus Problems.
General forms:- $\left|z-z_{1}\right|=a$ represents a circle, centre at $z 1$ radius a units.
Example 1. $|z|=1$.
Example 2. $|z-3|=2$.
Example 3. $|z-i|=1$.
Example 4. $|z-1-2 i|=2$
$|z-(1+2 i)|=2$ centre (1, 2), radius 2 units.
Example 5. $|z| \leq 3$ (note:- if less than, it is inside, if it is greater than, it is outside.)
Example 6. $2<|z| \leq 3$.
Example 7. $|z| \leq 4$ and $0 \leq \arg z \leq \pi$
3.

Example 8. $1 \leq _(z) \leq 2$ if $z=x+i y$,
then $\quad(z)=y(\& \therefore 1 \leq y \leq 2)$
Example 9. - π
$6<\arg z \leq \pi$
3.

Example 10. $1 \leq _(z) \leq 2$ and $\quad(z) \leq-1$
Example 11. $1 \leq _(z) \leq 2$ or $_(z) \leq-1$
Example 12. $|z| \leq 4$ or $0 \leq \arg z \leq \pi$

Using Algebra to Represent Locus Problems

Example 1. Show algebraically that $|z-2-i|=4$ represents a circle with radius 4 units and centre (2,1).
$|z-2-i|=4$.
$\therefore|x+i y-2-i|=4$.
$\therefore|(x-2)+i(y-1)|=4$.
$\therefore \quad(x-2) 2+(y-1) 2=4$.
$\therefore(x-2) 2+(y-1) 2=16$.
which is a circle centre (2,1), radius 4 units.
Example 2. Sketch the curve: (i) $_(z 2)=3$ (ii) $_(z 2)=4$.
(i) $_(z 2)=3$
_ $((x+i y) 2)=3$
_ $\left(x_{2}-y_{2}+2 i x y\right)=3$
$x_{2}-y_{2}=3$.
(ii) _($z 2$) $=4$.
$\therefore 2 x y=4$.
$\therefore x y=2$.
Example 3. Describe in geometric terms, the curve described by $2|z|=z+z+4$.
$2|z|=z+z+4$.
$\therefore 2|x+i y|=x+i y+x-i y+4$.
$\therefore 2 _x_{2}+y_{2}=2 x+4=2(x+2)$.
$\therefore \quad x_{2}+y_{2}=x+2$.
$\therefore x_{2}+y_{2}=(x+2) 2$.
$\therefore x_{2}+y_{2}=x_{2}+4 x+4$.
$\therefore y_{2}=4 x+4$.
\Rightarrow sideways parabola at vertex $(-1,0)$.
Example 4. Sketch the locus of _($z+i z)<2$.
$-(x+i y+i(x+i y))<2$.
$\therefore \quad(x+i y+i x-y)<2$.
$\therefore x-y<2$.
Example 5. If $z_{1}=1+i \& z_{2}=2+3 i$ find the locus of z if $\left|z-z_{1}\right|=\left|z-z_{2}\right|$.
$|x+i y-(1+i)|=|x+i y-(2+3 i)|$.
$\therefore|(x-1)+i(y-1)|=|(x-2)+i(y-3)|$.
$_(x-1) 2+(y-1) 2=_(x-2) 2+(y-3) 2$.
$(x-1) 2+(y-1) 2=(x-2) 2+(y-3) 2$.
$x_{2}-2 x+1+y_{2}-2 y+1=x_{2}-4 x+4+y_{2}-6 y+9$.
$\therefore 2 x+4 y=11$.
N.B. $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ will always be a straight line. It will always be the perpendicular bisector of the interval joining $z 1$ to $z 2$.
(*) Note. $\sin (A+B)=\sin A \cos B+\sin B \cos A \& \cos (A+B)=\cos A \cos B-\sin A \sin B$.
De Moivres Theorem. $(\cos \theta+i \sin \theta)_{n}=\cos n \theta+i \sin n \theta$.
Proof. (By mathematical induction for $n=0,1,2, \ldots$.)
Step 1. Test $n=0$.
L.H.S. $=(\cos \theta+i \sin \theta) 0$
$=1$
R.H.S. $=\cos 0+i \sin 0$
$=1$
$=$ L.H.S.
\therefore it is true for $n=0$.
Step 2. Assume true for $n=k$ i.e., $(\cos \theta+i \sin \theta) k=\cos k \theta+i \sin k \theta$.
Test for $n=k+1$.
i.e., L.H.S. $=(\cos \theta+i \sin \theta) k+1 \&$ R.H.S. $=\cos (k+1) \theta+i \sin (k+1) \theta$
$=(\cos \theta+i \sin \theta) k(\cos \theta+i \sin \theta) 1$
$=(\cos k \theta+i \sin k \theta)(\cos \theta+i \sin \theta)($ since we have assumed it true for $n=k)$
$=\cos k \theta \cos \theta+i \sin \theta \cos k \theta+i \sin k \theta \cos \theta-\sin k \theta \sin \theta$
$=\cos k \theta \cos \theta-\sin k \theta \sin \theta+i(\sin \theta \cos k \theta+\sin k \theta \cos \theta)$
$=\cos (k \theta+\theta)+i \sin (k \theta+\theta)($ see $(*)$ above $)$
$=\cos (k+1) \theta+i \sin (k+1) \theta$
$=$ R.H.S.
Step 3. If the result is true for $n=0$, then true for $n=0+1$, i.e., $n=1$. If the result is true for $n=1$, then true for $n=1+1$, i.e., $n=2$ ans so on for all nonnegative integers n_{-}
Example 1. Simplify:
(a) $(\cos \theta-i \sin \theta)-4(\mathbf{b})(\sin \theta-i \cos \theta)_{7}(\mathbf{c})(\cos 2 \theta+i \sin 2 \theta) 3$
$(\cos \theta-i \sin \theta) 4$.
(a) $(\cos \theta-i \sin \theta)-4=\cos (-4 \theta)-i \sin (-4 \theta)$
$=\cos 4 \theta+i \sin 4 \theta_{-}$
(b) $(\sin \theta-i \cos \theta) 7=(-i \cos \theta+\sin \theta) 7$
$=-i 7(\cos \theta-i \sin \theta) 7$
$=i(\cos 7 \theta-i \sin 7 \theta)$
$=\sin 7 \theta+i \cos 7 \theta$
(c) $(\cos 2 \theta+i \sin 2 \theta) 3$
$(\cos \theta-i \sin \theta) 4=(\cos \theta+i \sin \theta) 6$
$(\cos \theta-i \sin \theta) 4$
$=(\cos \theta+i \sin \theta) 6$
$(\cos (-\theta)+i \sin (\theta)) 4$
$=(\cos \theta+i \sin \theta) 6$
$(\cos \theta+i \sin \theta)-4$
$=(\cos \theta+i \sin \theta) 10$
$=\cos 10 \theta+i \sin 10 \theta$
De Moivre's Theorem and the Argand Diagram
Example. If $z=$
$\sqrt{ }$
$3+i$ represent the following on the Argand Diagram:
$z, i z, 1$
$z,-z, 2 z, z, z 2+z, z 3-z$
$z=2(\cos \pi$
$6+i \sin \pi$
6)
z
$-1=(2(\cos \pi$
$6+i \sin \pi$
6)) -1
$=1$
$2(\cos -\pi$
$6+i \sin -\pi$
6)
$=1$
$2(\cos \pi$
6
$-i \sin \pi$
6)
$2 z=4(\cos \pi$
$6+i \sin \pi$
6)
$z 2=(2(\cos \pi$
$6+i \sin \pi$
6) 2
$=4(\cos \pi$
$3+i \sin \pi$
3)
$z 3=(2(\cos \pi$
$6+i \sin \pi$
6)) 3
$=8(\cos \pi$
$2+i \sin \pi$
2)

Solution on next page.

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand A differential equation
c. Central Ideas:

- First Ordinary Differential Equations
- Methods to solve the first order first degree differential equations
d. Objectives: after the end of courses the student will be able to:
solve the first order first degree differential equations Pre test
Q1: solve the first order first degree differential equations

$$
\frac{x d y}{d x}+3 y=x^{3}
$$

Differential Equations

A differential equation is an equation that involves one or more derivatives.
Differential equations are classified by:

1. Type: there are two type

A- Ordinary differential equation:- Equation which involve only one independent variable is called ordinary differential equation .

For example

$$
1-\frac{d y}{d x}=x+5
$$

Is Ordinary differential equation, y is unknown function (dependent variable) and x is independent variable.
2- $y^{\prime \prime}+x 2\left(y^{\prime \prime}\right)^{2}+y^{\prime}=\cos x$
Is Ordinary differential equation, is y unknown function (dependent variable) and x is independent variable.
B- Partial differential equation:-Equation which involve more than one independent variable called Partial differential equation
For example

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=2 z
$$

Is partial.differential equation, is z unknown function (dependent variable) x and y is independent variable.
2. Order: The order of differential equation is the highest order derivative that occurs in the equation.
3. Degree: The exponent of the highest power of the highest order derivative.
For examples

Ex1:
$\frac{d y}{d x}=5 x+3 \quad 1$ st order-1 st degree
Ex2:
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d^{2} y}{d x}\right)^{5} \quad 3$ rd order-2nd degree
Ex3:
$4 \frac{d^{3} y}{d x^{3}}+\sin x \frac{d^{2} y}{d x^{2}}+5 x y=0 \quad$ 3rd order-1 st degree

ப INI.

Exercise: Find the order and degree of these differential equations.

1. $\frac{d y}{d x}+\cos x=0 \quad$ ans:1st order-1st degree
2. $3 d x+4 y^{2} d y=0$ ans:1st order-1st degree
3. $\frac{d^{2} y}{d x^{2}}+y=y^{2}$
4. $\left(y^{\prime \prime}\right)^{2}+2 y^{\prime}=x^{2}$
5. $y^{\prime \prime \prime}+2\left(y^{\prime \prime}\right)^{2}=x y$

Definition

The solution of the differential equation in the unknown function y and the independent variable x is a function $\mathrm{y}(\mathrm{x})$ that satisfies the differential equation.
i.e. any equation satisfying the differential equation is called solution of the differential equation

Exercise: Show that $y=a \cos 2 x+b \sin 2 x$ is a solution to $y "+4 y=0$

First Ordinary Differential

Ordinary Differential Equations are equation which involve only one independent variable

To solve the first order first degree differential equations we have the following cases

1- Variable Separable

First order differential equations. can be solved by integration if it is possible to collect all y terms with dy and all x terms with dx , that is, if it is possible to write the differential equations. in the form

$$
f(x) d x+g(y) d y=0
$$

then the general solution is:

$$
\int f(x) d x+\int g(y) d y=c \quad \text { where } \mathbf{c} \text { is an arbitrary constant. }
$$

Ex 1:- Solve $x d y=y d x$

$$
\begin{aligned}
& (y d x-x d y=0) \frac{1}{x y} \\
& \frac{d x}{x}-\frac{d y}{y}=0 \text { by integral of two sides } \\
& \int \frac{d x}{x}-\int \frac{d y}{y}=0 \\
& \operatorname{Lnx}-\ln y=\ln c \\
& \operatorname{Ln} \frac{x}{y}=\ln c \\
& \frac{x}{y}=c \\
& y=\frac{x}{c}
\end{aligned}
$$

Ex2: Solve the D.E. $x(2 y-3) d x+\left(x^{2}+1\right) d y=0$
$\frac{x}{\left(x^{2}+1\right)} d x+\frac{1}{(2 y-3)} d y=0$
$\int \frac{x}{\left(x^{2}+1\right)} d x+\int \frac{1}{(2 y-3)} d y=0$
$\frac{1}{2} \ln \left|\left(x^{2}+1\right)\right|+\frac{1}{2} \ln |(2 y-3)|=\frac{1}{2} \ln c$
Ex 3: -Solve the D.E $x e^{y} d y+\frac{x^{2}+1}{y} d x=0$

$$
\begin{aligned}
& \int y e^{y} d y+\int \frac{x^{2}+1}{x} d x=0 \\
& \int y e^{y} d y+\int\left(x+\frac{1}{x}\right) d x=0 \\
& y e^{y}-e^{y}+\left(\frac{x^{2}}{2}+\ln x\right)=c
\end{aligned}
$$

H MN.

Exercise: Separate the variables and solve.
1- $x(2 y-3) d x+\left(x^{2}+1\right) d y=0$
2- $\frac{d y}{d x}=\frac{4 y}{x(y-3)}$
3- $\frac{d y}{d x}=e^{x-y}$
4- $\sqrt{x y} \frac{d y}{d x}=1$

2- Homogeneous

Definition: A function of $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is said to be homogenous of degree \mathbf{n} if $f(k x, k y)=k^{n} f(x, y)$

Where \mathbf{k} is constant
For example

$$
\begin{aligned}
f(x, y)=x^{2} & +3 x y+y^{2}, f(k x, k y)=k^{2} x^{2}+3 k x . k y+k^{2} x^{2} \\
& =k^{2}\left(x^{2}+3 x y+x^{2}\right)=k^{2} f(x, y) \\
\therefore & f(x, y) \text { is a homogenous function of degree two } .
\end{aligned}
$$

Now, When the differential equation as form

$$
M(x, y) d x+N(x, y) d y=0
$$

Where M and N are function of x and y is called homogenous if satisfy the condition

$$
\begin{aligned}
& M(k x, k y)=k^{n} M(x, y) \\
& N(k x, k y)=k^{n} N(x, y)
\end{aligned}
$$

Where k is constant
For example

$$
\begin{aligned}
& 1-\left(x^{2}-y^{2}\right) d x+2 x y d y=0 \\
& M(x, y)=x^{2}-y^{2}, N(x, y)=2 x y \\
& M(k x, k y)=(k x)^{2}-(k y)^{2}=k^{2}\left(x^{2}-y^{2}\right)=k^{2} M \\
& N(k x, k y)=2(k x)(k y)=2 k^{2} x y=k^{2} N
\end{aligned}
$$

The equation is a homogenous

$$
\begin{aligned}
2-(x-y) d x+x y d y= & 0 \\
& M(x, y)=x-y, N(x, y)=x y \\
& M(k x, k y)=k x-k y=k(x-y)=k M \\
& N(k x, k y)=(k x)(k y)=k^{2} x y=k^{2} N
\end{aligned}
$$

The equation is not homogenous
If the equation is homogeneous we can solved by the following method :Put in the form

$$
\begin{equation*}
\frac{d y}{d x}=f\left(\frac{y}{x}\right) \tag{1}
\end{equation*}
$$

To solve it put $v=\frac{y}{x} \Rightarrow y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substitute in eq. (1) gives

$$
\begin{aligned}
& v+x \frac{d v}{d x}=f(v) \Rightarrow f(v)-v=x \frac{d v}{d x} \\
& \frac{d v}{f(v)-v}=\frac{d x}{x}(\text { Separable D.E })
\end{aligned}
$$

Integration of both sides given the final solution

$$
\int \frac{d v}{f(v)-v}=\ln |x|+c
$$

Example

$$
\text { Solve }\left(x^{2}+y^{2}\right) d x+2 x y d y=0
$$

Solution

$$
\begin{align*}
& M(x, y)=x^{2}+y^{2}, N(x, y)=2 x y \\
& M(k x, k y)=k^{2}\left(x^{2}+y^{2}\right), N(k x, k y)=2 k^{2}(x y) \\
& M(x, y) \text { and } N(x, y) \text { are hom. } \\
& 2 x y d y=-\left(x^{2}+y^{2}\right) d x \\
& \frac{d y}{d x}=\frac{-\left(x^{2}+y^{2}\right)}{2 x y} \tag{1}
\end{align*}
$$

Let $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$
Substitute y and $\frac{d y}{d x}$ in eq. (1) gives

$$
\begin{gathered}
v+\frac{x d v}{d x}=\frac{-\left(x^{2}+v^{2} x^{2}\right)}{2 x^{2} v} \\
v+\frac{x d v}{d x}=\frac{-\left(1+v^{2}\right)}{2 v} \\
\frac{x d v}{d x}=\frac{-\left(1+v^{2}\right)}{2 v}-v \\
\frac{x d v}{d x}=\frac{-\left(1+v^{2}\right)-2 v^{2}}{2 v} \\
\frac{x d v}{d x}=\frac{-\left(1+3 v^{2}\right)}{2 v} \\
\frac{x}{d x}=\frac{-\left(1+3 v^{2}\right)}{2 v d v} \\
\frac{d x}{x}=\frac{2 v d v}{-\left(1+3 v^{2}\right)} \\
\frac{d x}{x}+\frac{2 v d v}{\left(1+3 v^{2}\right)}=0
\end{gathered}
$$

Integration of both sides given the final solution

$$
\ln |x|+\frac{1}{3} \ln \left|1+3 v^{2}\right|=c
$$

H.W:

Solve

$$
\begin{aligned}
& 1-\left(x^{3}-3 x^{2} y\right) d x-\left(x^{3}-x^{3}\right) d y=0 \\
& 2-\frac{d y}{d x}=\frac{x+y}{x-y}
\end{aligned}
$$

Ministry of higher Education and Scientific Research

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand A differential equation
c. Central Ideas:

- First Ordinary Differential Equations

- Methods to solve the first order first degree differential equations
d. Objectives: after the end of courses the student will be able to:

Solve the first order first degree differential equations

Pre test
Q1: solve the first order first degree differential equations

$$
\frac{x d y}{d x}+3 y=x^{3}
$$

3-Exact

A differential equation $M(x, y) d x+N(x, y) d y=0$ is said to be exact if and only

$$
\text { if } \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

For example
1- The equation $\left(x^{2}+y^{2}\right) d x+(2 x y+\cos y) d y$ isexact because the partial derivative

$$
\frac{\partial M}{\partial y}=\frac{\partial\left(x^{2}+y^{2}\right)}{\partial y}=2 y, \frac{\partial N}{\partial x}=\frac{\partial(2 x y+\text { cos } y)}{\partial x}=2 y \text { are equal. }
$$

2- The equation $(x+3 y) d x+\left(x^{2}+\cos y\right) d y$ is not exact because the partial derivative

$$
\frac{\partial M}{\partial y}=\frac{\partial(x+3 y)}{\partial y}=3, \frac{\partial N}{\partial x}=\frac{\partial\left(x^{2}+\cos y\right)}{\partial x}=2 x \text { are not equal. }
$$

Steps for solving an Exact differential equation

1- Match the equation to the form $M(x, y) d x+N(x, y) d y=0$ to identify M and N .
2- Integrate M (or N) with respect to x (or y), writing the constant of integration as $\mathrm{g}(\mathrm{y})$ or $\mathrm{g}(\mathrm{x})$.
3- Differential with respect to y (or x) and set the result equal to N (or M) to find $g^{\prime}(y)$ or $g^{\prime}(x)$.
4- Integral to find $\mathrm{g}(\mathrm{y})$ or $\mathrm{g}(\mathrm{x})$.

5- Write the solution of the exact equation as $f(x, y)=c$

Example

Solve $\left(x^{2}+y^{2}\right) d x+(2 x y+$ cos $y) d y=0$
Solution
The equation $\left(x^{2}+y^{2}\right) d x+(2 x y+\cos y) d y$ is exact because
$\frac{\partial M}{\partial y}=\frac{\partial\left(x^{2}+y^{2}\right)}{\partial y}=2 y, \frac{\partial N}{\partial x}=\frac{\partial(2 x y+c o s y)}{\partial x}=2 y$ are equal.
Step1 Match the equation to the form $M(x, y) d x+N(x, y) d y=0$ to identify M.

$$
M(x, y)=x^{2}+y^{2}
$$

Step2Integrate M with respect to x , writing the constant of integration as $\mathrm{g}(\mathrm{y})$.

$$
\int M(x, y) d x=\int\left(x^{2}+y^{2}\right) d x=\frac{x^{3}}{3}+x y^{2}+g(y)
$$

Step3 Differential with respect y and set the result equal to N to find $g^{\prime}(y)$.

$$
\begin{aligned}
& \frac{\partial\left[\frac{x^{3}}{3}+x y^{2}+g(y)\right]}{\partial y}=2 x y+g^{\prime}(y) \\
& 2 x y+g^{\prime}(y)=2 x y+\cos y \Rightarrow g^{\prime}(y)=\cos y
\end{aligned}
$$

Step4 Integral to find $\mathrm{g}(\mathrm{y})$.

$$
\int g^{\prime}(y) d y=\int \cos y d y=\sin y
$$

Step5 Write the solution of the exact equation as $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{c}$

$$
\frac{x^{3}}{3}+x y^{2}+\sin y=c
$$

H.W:

Solve the forlowing equation
1- $\frac{d y}{d x}=\frac{x^{3}-3 y x^{2}}{x^{3}-y^{3}}$
2- $\quad\left(x^{2}-3 y^{2}+x+y-2\right) d x+\left(x-6 x y+y^{2}+10\right) d y=0$

4-First - order linear differential equation

A differential equation that can be written in the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Where P and Q are function of the x is called a linear first orde equation .

The solution is

$$
y=\frac{1}{I(x)}\left[\int I(x) Q(x) d x+c\right]
$$

Where $I(x)=e^{\int P(x) d x}$

Steps for solving a linear order equation

1- Put it in standard form and identify the functions $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$.
2- Find an integral of $\mathrm{p}(\mathrm{x})$ i.e $\int p(x) d x$
3- Find the integrating factor $I(x)=e^{\int P(x) d x}$
4- Find y using the following equation

$$
y=\frac{1}{I(x)}\left[\int I(x) Q(x) d x+c\right], \text { where } \mathrm{c} \text { is constant }
$$

Solve $x \frac{d y}{d x}-3 y=x^{2}$

Solution

Step1 Put the equation in standard form and identify the functions $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$.To do so , we divide both sides of the equation by the coefficient of $\frac{d y}{d x}$, In this case x , obtaining

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{3}{x} y=x \\
& p(x)=\frac{-3}{x} \text { and } Q(x)=x
\end{aligned}
$$

Step2 Find an integral of $\mathrm{p}(\mathrm{x})$

$$
\int p(x) d x=\int \frac{-3}{x} d x=-3 \ln x
$$

Step3 Find the integrating factor $I(x)$

$$
I(x)=e^{\int P(x) d x}=e^{-3 \ln x}=e^{\ln x^{-3}}=\frac{1}{x^{3}}
$$

Step4 Find the soluation

$$
\begin{gathered}
y=\frac{1}{I(x)}\left[\int I(x) Q(x) d x+c\right], \text { where } \mathrm{c} \text { is constant } \\
y=\frac{1}{1 / x^{3}}\left[\int \frac{1}{x^{3}} x d x+c\right]
\end{gathered}
$$

The solution is the function $y=x^{3}\left[\frac{-1}{x}+c\right]=c x^{3}-x^{2}$

H.W:

Solve the following equations
1- $\quad x \frac{d y}{d x}+3 y=x^{2}$
2- $\left(1+x^{2}\right) d y+\left(y-\tan ^{-1} x\right) d x=0$
3- $\frac{d y}{d x}-y \tan x=1$

5- The Bernoulli Equation

The equation $\frac{d y}{d x}+p(x) y=Q(x) y^{n}$
if $n \neq 0$ called Bernoulli equation. We shall show transform this equation to linear equation. In fact we must reduce this equation to linear, product eq.(1) by y^{-n}

$$
\begin{align*}
& {\left[\frac{d y}{d x}+p(x) y=Q(x) y^{n}\right] y^{-n}} \\
& \quad \frac{d y}{d x} y^{-n}+p(x) y^{1-n}=Q(x) \tag{2}
\end{align*}
$$

Let

$$
\begin{aligned}
& w=y^{1-n} \\
& d w=(1-n) y^{1-n-1} d y
\end{aligned}
$$

Or

$$
\begin{aligned}
& \frac{d w}{1-n}=y^{-n} d y \quad \text { Put in (2) } \\
& \frac{d w}{(1-n) d x}+p(x) w=Q(x)
\end{aligned}
$$

Or

$$
\frac{d w}{d x}+(1-n) p(x) w=(1-n) Q(x)
$$

Example

Solve the following differential equation

$$
\frac{d y}{d x}+\frac{y}{x}=y^{2}
$$

Solution

$$
\begin{aligned}
& \quad\left[\frac{d y}{d x}+\frac{y}{x}=y^{2}\right] y^{-2} \\
& \frac{d y}{d x} y^{-2}+\frac{y^{-1}}{x}=1 \\
& \text { Let } w=y^{-1} \Rightarrow d w=-y^{-2} d y \\
& -d w=y^{-2} d y \text { put in eq.(1) }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{d w}{d x}+\frac{w}{x}=1 \\
& \frac{d w}{d x}-\frac{w}{x}=-1 \\
& p=-\frac{1}{x}, Q=-1 \\
& \quad I=e^{\int p d x}=e^{\int-\frac{d x}{x}}=e^{-\ln x}=\frac{1}{x}
\end{aligned}
$$

The solution

$$
\begin{aligned}
& I w=\int I Q d x+c \\
& \frac{w}{x}=\int \frac{-1}{x} d x+c=-\ln x+c \\
& \frac{1}{x y}=-\ln x+c \\
& y=\frac{1}{x(c-\ln x)}
\end{aligned}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand A differential equation
c. Central Ideas:

- Second Ordinary Differential Equations
- Methods to solve the second order linear homogeneous differential equations
d. Objectives: after the end of courses the student will be able to:
- solve the second order linear homogeneous differential equations
pre test
Q1: solve the first order first degree differential equations

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

Second Order Linear Homogeneous

Equation

The linear equation

$$
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1 n}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x)
$$

If $f(x)=0$ then it is called homogeneous ; otherwise it is called nonhomogeneous

Linear Differenential operator

It is convenient to introduce the symbol D to respect the operation of differenential with respect to x . That is, we write $D f(x)$ to mean $\frac{d f}{d x}$.
Furthermore, we define power of D to mean taking successive derivative:

$$
\begin{aligned}
& D^{2} f(x)=D\{D f(x)\}=\frac{d^{2} f}{d x^{2}}, D^{3} f(x)=D\left\{D^{2} f(x)\right\}=\frac{d^{3} f}{d x^{3}} \\
& \left(D^{2}+D-2\right) f(x)=D^{2} f(x)+D f(x)-2 f(x)=\frac{d^{2} f}{d x^{2}}+\frac{d f}{d x}-2 f(x)
\end{aligned}
$$

The Characteristic Equation

The linear second order equation with constant real- number coefficient is

$$
\frac{d^{2} y}{d x^{2}}+2 a \frac{d y}{d x}+b y=0
$$

Or, in operator notation

$$
\begin{aligned}
& \left(D^{2}+2 a D+b\right) y=0 \\
& \left(D-r_{1}\right)\left(D-r_{2}\right) y=0
\end{aligned}
$$

Solution of $\frac{d^{2} y}{d x^{2}}+2 a \frac{d y}{d x}+b y=0$ depended on root r_{1} and r_{2}

Root $\boldsymbol{r}_{\mathbf{1}}$ and $\boldsymbol{r}_{\mathbf{2}}$	Solution
Real and unequal	$y=c_{1} e^{r_{1} x}+c_{2} e^{r_{21} x}$

Real and equal	$y=\left(c_{1} x+c_{2}\right) e^{r_{1} x}$
Complex conjugate $a \pm i b$	$y=e^{a x}\left(c_{1} \cos b x+c_{2} \sin b x\right)$

Example: solve the following equations
a) $\dot{y}+\dot{y}-2 y=0$
b) $\dot{y}+4 \dot{y}+4 y=0$
c) $\dot{y}+4 \hat{y}+6 y=0$
d) $\dot{y}+4 y=0$

Solution

1. $\dot{y}+\dot{y}-2 y=0$

The characteristic equation is

$$
\begin{array}{r}
D^{2}+D-2=0 \\
(D-1)(D+2)=0 \\
r_{1}=1 \text { and } r_{2}=-2
\end{array}
$$

The solution is

$$
y=c_{1} e^{x}+c_{2} e^{-2 x}
$$

b) $\dot{y}+4 \dot{y}+4 y=0$

The characteristic equation is

$$
\begin{gathered}
D^{2}+4 D+4=0 \\
(D+2)(D+2)=0
\end{gathered}
$$

The solution is

$$
y=\left(c_{1} x+c_{2}\right) e^{-2 x}
$$

C) $\dot{y}+4 y ́+6 y=0$

The characteristic equation is

$$
\begin{gathered}
D^{2}+4 D+6=0 \\
\mathrm{r}_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
r_{1,2}=\frac{-4 \pm \sqrt{16-24}}{2} \\
r_{1,2}=\frac{-4 \pm \sqrt{-8}}{2} \\
\mathrm{r}_{1,2}=-2 \pm \sqrt{2} i
\end{gathered}
$$

The solution is

$$
y=e^{-2 x}\left(c_{1} \cos \sqrt{2} x+c_{2} \sin \sqrt{2} x\right)
$$

d) $\dot{y}+4 y=0$

The characteristic equation is

$$
\begin{gathered}
D^{2}+4=0 \\
(D-2 i)(D+2 i)=0 \\
r_{1}=2 i \\
\boldsymbol{r}_{2}=-2 i
\end{gathered}
$$

The solution is

$$
y=\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand A differential equation
c. Central Ideas:

- Second order Non-homogeneous Linear Equations
- Methods to solve Second order Non-homogeneous Linear

Equations
d. Objectives: after the end of courses the student will be able to:

- SolveSecond order Non-homogeneous Linear Equations

Pre test

Q1: solve differential equations
$y^{\prime \prime}-y^{\prime}-\mathbf{2 y}=4 \mathrm{x}^{3} \quad$ [use undetermined coefficient method]

Second order Non-homogeneous Linear Equations

Now, we solve non-homogeneous equations of the form

$$
\frac{d^{2} y}{d x^{2}}+2 a \frac{d y}{d x}+b y=f(x)
$$

The procedure has three basic steps.
First: we find the homogeneous solution y_{h} (h stand for homogeneous) of the reduced equation.

$$
\frac{d^{2} y}{d x^{2}}+2 a \frac{d y}{d x}+b y=0
$$

Second: we find a particular solution y_{p} of the complete equation.
Finally: we add y_{p} to y_{h} to form the general solution of the complete equation. So, the final solution is

$$
y=y_{h}+y_{p}
$$

Methods to find the particular solution y_{p}

1) Variation of parameters:

This method assumes we already know the homogeneous solution

$$
y_{h}=c_{1} u_{1}(x)+c_{2} u_{2}(x)
$$

the method consists of replacing the constants c_{1} and c_{2} by function $v_{1}(x)$ and $v_{2}(x)$, then requiring that the new expression

$$
y_{h}=v_{1} u_{1}+v_{2} u_{2}
$$

and by solving the following two equations

$$
\begin{gathered}
\hat{v}_{1}^{\prime} u_{1}+\hat{v}_{2}^{\prime} u_{2}=0 \\
\hat{v}_{1}^{\prime} u_{1}^{\prime}+\hat{v}_{2}^{\prime} u_{2}^{\prime}=f(x)
\end{gathered}
$$

for the un know function \dot{v}_{1}^{\prime} and \hat{v}_{2}^{\prime} using the following matrix notation

$$
\left[\begin{array}{ll}
u_{1} & u_{2} \\
u_{1}^{\prime} & u_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
f(x)
\end{array}\right]
$$

Finally v_{1} and v_{2} can be found by integration.
In appling the method of Variation of parameters to find the particular solution, the following steps are taken:
i. Find v_{1}^{\prime} and v_{2}^{\prime} using the following equation

$$
\begin{aligned}
& v_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & u_{2} \\
\left\lvert\, \begin{array}{l}
(x)
\end{array}\right. & u_{2}
\end{array}\right|=\frac{-u_{2} f(x)}{\left|\begin{array}{ll}
u_{1} & u_{2} \\
u_{1} & u_{2}
\end{array}\right|}=\frac{u_{1}}{u_{1} u_{2}-u_{2} u_{1}}}{} \\
& \dot{v}_{2}^{\prime}=\frac{\left|\begin{array}{ll}
u_{1} & 0 \\
u_{1} & f(x)
\end{array}\right|}{\left|\begin{array}{ll}
u_{1} & u_{2} \\
u_{1} & u_{2}
\end{array}\right|}=\frac{u_{1} f(x)}{u_{1} u_{2}-u_{2} u_{1}}
\end{aligned}
$$

ii. Integrate \dot{v}_{1}^{\prime} and \dot{v}_{2} to find v_{1} and v_{2}.
iii. Write the particular solution

$$
y_{p}=v_{1} u_{1}+v_{2} u_{2}
$$

Example: solve the equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=6
$$

Solution: the homogeneous solution y_{h} can be found using the reduced equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=0
$$

The characteristic equation is $D^{2}+2 D-3=0$ and the roots of this equation are $r_{1}=-3$ and $r_{2}=1$, so

$$
\begin{gathered}
y_{h}=c_{1} e^{-3 x}+c_{2} e^{x} \Rightarrow u_{1}=e^{-3 x} \text { and } u_{2}=e^{x} \\
v_{1}^{\prime} e^{-3 x}+v_{2}^{\prime} e^{x}=0 \\
-3 v_{1} e^{-3 x}+v_{2} e^{x}=6 \\
v_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & e^{x} \\
6 & e^{x}
\end{array}\right|}{\left|\begin{array}{cc}
e^{-3 x} & e^{x} \\
-3 e^{-3 x} & e^{x}
\end{array}\right|}=\frac{-6 e^{x}}{e^{-3 x} e^{x}-e^{x}\left(-3 e^{-3 x}\right)}=\frac{-6 e^{x}}{e^{-2 x}+3 e^{-2 x}}=\frac{-6 e^{x}}{4 e^{-2 x}} \\
v_{1}^{\prime}=\frac{-3}{2} e^{3 x}
\end{gathered}
$$

$$
\begin{gathered}
v_{2}=\frac{\left|\begin{array}{cc}
e^{-3 x} & 0 \\
-3 e^{-3 x} & 6
\end{array}\right|}{\left|\begin{array}{cc}
e^{-3 x} & e^{x} \\
-3 e^{-3 x} & e^{x}
\end{array}\right|}=\frac{6 e^{-3 x}}{4 e^{-2 x}}=\frac{3}{2} e^{-x} \\
v_{1}=\int \frac{-3}{2} e^{3 x} d x=\frac{-1}{2} e^{3 x} \\
v_{2}=\int \frac{3}{2} e^{-x} d x=\frac{-3}{2} e^{-x} \\
y_{p}=v_{1} u_{1}+v_{2} u_{2} \\
=\left(\frac{-1}{2} e^{3 x}\right) e^{-3 x}+\left(\frac{-3}{2} e^{-x}\right) e^{x}=-2
\end{gathered}
$$

The general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{1} e^{-3 x}+c_{2} e^{x}-2
\end{aligned}
$$

Example: solve the equation

$$
\dot{y}-2 y^{\prime}+1=e^{x} \ln x
$$

solution

the characteristic equation is $D^{2}-2 D+1=0 \Rightarrow(D-1)(D-1)=0$
the roots are $r_{1}=r_{2}=1$
the solution is $y_{h}=\left(c_{1} x+c_{2}\right) e^{x}=c_{1} x e^{x}+c_{2} e^{x}$
from that we have $u_{1}(x)=x e^{x}$ and $u_{2}(x)=e^{x}$

$$
\begin{gathered}
u_{1} v_{1}^{\prime}+u_{2} v_{2}^{\prime}=0 \\
u_{1}^{\prime} v_{1}^{\prime}+u_{2}^{\prime} v_{2}^{\prime}=f(x) \\
x e^{x} v_{1}^{\prime}+e^{x} v_{2}^{\prime}=0 \\
\left(x e^{x}+e^{x}\right) v_{1}^{\prime}+e^{x} v_{2}^{\prime}=e^{x} \ln x
\end{gathered}
$$

Let $\quad M=\left|\begin{array}{cc}x e^{x} & e^{x} \\ x e^{x}+e^{x} & e^{x}\end{array}\right|=x e^{2 x}-\left(x e^{2 x}+e^{2 x}\right)=-e^{2 x}$

$$
\begin{gathered}
v_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & e^{x} \\
e^{x} \ln x & e^{x}
\end{array}\right|}{M}=\frac{-\ln x e^{2 x}}{-e^{2 x}}=\ln x \\
v_{2}^{\prime}=\frac{\left|\begin{array}{cc}
x e^{x} & 0 \\
x e^{x}+e^{x} & e^{x} \ln x
\end{array}\right|}{M}=\frac{x \ln x \cdot e^{2 x}}{-e^{2 x}}=-x \ln x \\
v_{1}=\int \ln x d x
\end{gathered}
$$

Let $u=\ln x, d v=d x \Rightarrow d u=\frac{1}{x} d x, v=x$

$$
\begin{gathered}
v_{1}=x \ln x-\int x \cdot \frac{1}{x} d x=x \ln x-x \\
v_{2}=-\int x \ln x d x
\end{gathered}
$$

Let $u=\ln x \Rightarrow d u=\frac{1}{x} d x, d v=x d x \Rightarrow v=\frac{x^{2}}{2}$

$$
v_{2}=-\left(\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x\right)
$$

$$
\begin{gathered}
=-\left(\frac{x^{2}}{2} \ln x-\int \frac{x}{2} d x\right) \\
=-\left(\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\right) \\
=\frac{x^{2}}{4}-\frac{x^{2}}{2} \ln x
\end{gathered}
$$

the particular solution is

$$
\begin{gathered}
y_{p}=v_{1} u_{1}+v_{2} u_{2} \\
=(x \ln x-x) x e^{x}+\left(\frac{x^{2}}{4}-\frac{x^{2}}{2} \ln x\right) e^{x} \\
=x^{2} e^{x} \ln x-x^{2} e^{x}+\frac{x^{2}}{4} e^{x}-\frac{x^{2}}{2} e^{x} \ln x \\
=\frac{x^{2}}{2} e^{x} \ln x-\frac{3 x^{2}}{4} e^{x}
\end{gathered}
$$

The complete solution is

$$
\begin{gathered}
y=y_{h}+y_{p} \\
=c_{1} x e^{x}+c_{2} e^{x}+\frac{x^{2}}{2} e^{x} \ln x-\frac{3 x^{2}}{4} e^{x}
\end{gathered}
$$

2) Undetermined coefficients: this method gives us the particular solution for selected equations.

The method of undetermined coefficients for selected equation of the form

$$
\frac{d^{2} y}{d x^{2}}+2 a \frac{d y}{d x}+b y=f(x)
$$

$$
\begin{gathered}
e^{r x} \\
\sin (k x), \cos (k x) \\
a x^{2}+b x+c
\end{gathered}
$$

$$
\begin{gathered}
A e^{r x} \\
B \cos (k x)+C \sin (k x) \\
D x^{2}+E x+F
\end{gathered}
$$

Important Note: this expression used for y_{p} should not have any term similar to the terms of the y_{h}. Otherwise, multiplying the term that is similar to y_{h} repeating by x until it becomes different.

Example: solve the equation

1. $\dot{y}-6 y ́+9 y=e^{3 x}$
2. $y^{\prime}-\dot{y}=5 e^{x}-\sin (2 x)$
3. $\dot{y}-\dot{y}-2 y=4 x^{3}$

Solution: 1) The homogeneous solution y_{h} can be found using the reduced equation

$$
\dot{y}-6 y ́+9 y=0
$$

the characteristic equation is

$$
\begin{gathered}
D^{2}-6 D+9=0 \\
(D-3)^{2}=0
\end{gathered}
$$

the roots are $r_{1}=r_{2}=3$

$$
y_{h}=\left(c_{1} x+c_{2}\right) e^{3 x}
$$

Since $f(x)=e^{3 x}$ then let $y_{p}=A e^{3 x}$. But, $A e^{3 x}$ is similar the second term of the y_{h}. So, let $y_{p}=A x e^{3 x}$. Again $A x e^{3 x}$ is also similar to the first term of the y_{h}. Finally, let $y_{p}=A x^{2} e^{3 x} \Rightarrow y_{p}^{\prime}=3 A x^{2} e^{3 x}+2 A x e^{3 x}$

$$
\begin{gathered}
y_{p}^{\prime}=\left(9 x^{2} e^{3 x}+6 x e^{3 x}\right)+\left(6 A x e^{3 x}+2 A e^{3 x}\right) \\
=9 A x^{2} e^{3 x}+12 x e^{3 x}+2 A e^{3 x}
\end{gathered}
$$

substituting into the differential equation $\dot{y}-6 \hat{y}+9 y=e^{3 x}$ we get

$$
\begin{aligned}
& \left(9 A x^{2} e^{3 x}+12 A x e^{3 x}+2 A e^{3 x}\right)-6\left(3 A x^{2} e^{3 x}+2 A x e^{3 x}\right)+9 A x^{2} e^{3 x}=e^{3 x} \\
& \Rightarrow 2 A e^{3 x}=e^{3 x} \Rightarrow 2 A=1 \Rightarrow A=\frac{1}{2} \\
& \therefore y_{p}=\frac{1}{2} x^{2} e^{3 x}
\end{aligned}
$$

the general solution is

$$
y=\left(c_{1} x+c_{2}\right) e^{3 x}+\frac{1}{2} x^{2} e^{3 x}
$$

2) The homogeneous solution y_{h} can be found using the reduced equation

$$
y^{\prime}-y^{\prime}=0
$$

the characteristic equation is

$$
D^{2}-D=0 \Longrightarrow D(D-1)=0
$$

the roots are $r_{1}=1$ and $r_{2}=0$

$$
\therefore y_{h}=c_{1} e^{x}+c_{2}
$$

Since $f(x)=5 e^{x}-\sin 2 x$ then let $y_{p}=A e^{x}+B \cos (2 x)+C \sin (2 x)$. But, $A e^{x}$ is similar to the first term of the homogeneous solution. So, let

$$
\begin{aligned}
& y_{p}=A x e^{x}+B \cos (2 x)+C \sin (2 x) \\
& y_{p}^{\prime}=A x e^{x}+A e^{x}-2 B \sin (2 x)+2 C \cos (2 x) \\
& y_{p}^{\prime}=A x e^{x}+A e^{x}+A e^{x}-4 B \cos (2 x)-4 C \sin (2 x)
\end{aligned}
$$

substituting into the differential equation $y^{\prime}-y^{\prime}=5 e^{x}-\sin (2 x)$
we get

$$
\begin{gathered}
A x e^{x}+2 A e^{x}-4 B \cos (2 x)-4 C \sin (2 x) \\
-\left(A x e^{x}+A e^{x}-2 B \sin (2 x)+2 C \cos (2 x)\right)=5 e^{x}-\sin (2 x) \\
A e^{x}-(4 B+2 C) \cos 2 x+(2 B-4 C) \sin 2 x=5 e^{x}-\sin 2 x \\
A=5,(4 B+2 C)=0,(2 B-4 C)=-1 \\
A=5, B=-\frac{1}{10}, C=\frac{1}{5}
\end{gathered}
$$

So,

$$
y_{p}=5 x e^{x}-\frac{1}{10} \cos 2 x+\frac{1}{5} \sin 2 x
$$

the general solution is

$$
\begin{gathered}
y=y_{h}+y_{p} \\
y=c_{1} e^{x}+c_{2}+5 x e^{x}-\frac{1}{10} \cos 2 x+\frac{1}{5} \sin 2 x
\end{gathered}
$$

3) The homogeneous solution y_{h} can be found using the reduced equation

$$
\dot{y}-\dot{y}-2 y=0
$$

the characteristic equation is

$$
\begin{gathered}
D^{2}-D-2=0 \\
(D-2)(D+1)=0
\end{gathered}
$$

the roots are $r_{1}=2$ and $r_{2}=-1$

$$
y_{h}=c_{1} e^{2 x}+c_{2} e^{-x}
$$

Since $f(x)=4 x^{3}$ then let

$$
y_{p}=A x^{3}+B x^{2}+C x+D .
$$

$$
\begin{gathered}
y_{p}^{\prime}=3 A x^{2}+2 B x+C \\
y_{p}^{\prime}=6 A x+2 B
\end{gathered}
$$

substituting in to differential equation $\dot{y}-\dot{y}-2 y=4 x^{3}$
we get

$$
\begin{gathered}
6 A x+2 B-\left(3 A x^{2}+2 B x+C\right)-2\left(A x^{3}+B x^{2}+C x+D\right)=4 x^{3} \\
-2 A x^{3}-(3 A+2 B) x^{2}+(6 A-2 B-2 C) x+(2 B-C-2 D)=4 x^{3} \\
-2 A=4 \Rightarrow A=-2 \\
3 A+2 B=0 \Rightarrow 3(-2)+2 B=0 \Rightarrow 2 B=6 \Rightarrow B=3
\end{gathered}
$$

$$
\begin{gathered}
6 A-2 B-2 C=0 \Rightarrow 6(-2)-2(3)-2 C=0 \Rightarrow C=-9 \\
2 B-C-2 D=0 \Rightarrow 2(3)-(-9)-2 D=0 \Rightarrow D=\frac{15}{2}
\end{gathered}
$$

So, $y_{p}=-2 x^{3}+3 x^{2}-9 x+7.5$
the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{-x}-2 x^{3}+3 x^{2}-9 x+7.5
$$

Application of Differential Equation

Example: For the circuit shown below. Find expression for the current $i(t)$ if $V_{s}(t)=$ sinw t.

Solution:

$$
\begin{gathered}
V_{s}=R i+L \frac{d i}{d t} \\
\text { sinwt }=8 i+0.1 \frac{d i}{d t} \Rightarrow \frac{d i}{d t}+80 i=10 \text { sinwt (linear O.D.E.) }
\end{gathered}
$$

$P(t)=80$ and $Q(t)=10$ sinw t

$$
I(t)=e^{\int P(t) d t}=e^{\int 80 d t}=e^{80 t}
$$

now

$$
\begin{gathered}
I(t) \cdot i=\int I(t) Q(t) d t+c \\
e^{80 t} \cdot i=\int e^{80 t} \cdot 10 \sin w t d t+c \\
e^{80 t} \cdot i=10 \int e^{80 t} \cdot \sin w t d t+c \\
e^{80 t} \cdot i=10\left[\frac{e^{80 t}}{(80)^{2}+w^{2}} \cdot(80 \sin w t-w \cos w t)\right]+c \\
i=\frac{10}{(80)^{2}+w^{2}} \cdot(80 \sin w t-w \cos w t)+c e^{-80 t}
\end{gathered}
$$

Example: For the circuit shown below. Find the current $i(t)$ if $i(0)=1 A$.

Solution:

$$
\begin{gathered}
R i+\frac{1}{c} \int i d t=V_{s} \\
R \frac{d i}{d t}+\frac{1}{c} i=\frac{d}{d t} V_{s} \\
10 \frac{d i}{d t}+\frac{1}{500} i=2 * 5 \cos 5 t \\
\frac{d i}{d t}+200 i=\cos 5 t
\end{gathered}
$$

Using Linear O.D.E $\Rightarrow P(t)=200, Q(t)=\cos 5 t$
$I(t)=e^{\int P(t) d t}=e^{\int 200 d t}=e^{200 t}$

$$
\begin{gathered}
i . I(t)=\int I(t) Q(t) d t+c \\
i . e^{200 t}=\int e^{200 t} \cos 5 t d t+c \\
i . e^{200 t}=\frac{e^{200 t}}{(200)^{2}+25}(200 \cos 5 t+5 \sin 5 t)+c \\
i=\frac{1}{(200)^{2}+25}(200 \cos 5 t+5 \sin 5 t)+c * e^{-200 t} \\
\because i(0)=1 A \\
\therefore 1=\frac{1}{(200)^{2}+25}(200 * 1+5 * 0)+c \Rightarrow c=1-4.997 * 10^{-3} \\
\Rightarrow c=0.998
\end{gathered}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Multiple Integrals
c. Central Ideas:

- Double integral over Rectangular Region
d. Objectives: after the end of courses the student will be able to:
solve Double integral over Rectangular Region
pre test
Q1 Evaluate $\int_{0}^{1} \int_{0}^{1}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) d x d y$

Multiple Integrals

Double integral

Let $\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a continuous function in side and on the boundary R , then $\iint_{R} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dA}$ is called double integral of a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ over R .

To evaluate the double integral:

(1) Double integral over Rectangular Region

The double integral of a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ over rectangle R where

$$
\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{a} \leq x \leq b, \mathrm{c} \leq y \leq d\}
$$

is

$$
\begin{gathered}
\iint \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dA}=\int_{a}^{b}\left[\int_{c}^{d} \mathrm{f}(\mathrm{x}, \mathrm{y}) d y\right] \mathrm{dx} \\
=\int_{c}^{d}\left[\int_{a}^{b} \mathrm{f}(\mathrm{x}, \mathrm{y}) d x\right] \mathrm{dy}
\end{gathered}
$$

- R is called the region of integration.
- The expression $d A$ indicates that this is an integral over a two dimensional region

Note
a) $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$
b) $\int_{c}^{d} \int_{a}^{b} f_{1}(x) f_{2}(y) d x d y=\int_{a}^{b} f_{1}(x) d x \int_{c}^{d} f_{2}(y) d y$

Example:

Evaluate $\iint(\mathrm{x}+\mathrm{y}) \mathrm{dA}$, over $\mathrm{R}=\{(\mathrm{x}, \mathrm{y})$ । $1 \leq x \leq 3,-\mathbf{1} \leq y \leq 2\}$

Solution

$$
\begin{aligned}
& \iint(\mathrm{x}+\mathrm{y}) \mathrm{dA}=\int_{1}^{3} \int_{-1}^{2}(\mathrm{x}+\mathrm{y}) \mathrm{dydx} \\
& =\int_{1}^{3}\left[\left.\left(x y+\frac{y^{2}}{2}\right) \right\rvert\,{ }_{-1}^{2}\right] \mathrm{dx} \\
& =\int_{1}^{3}\left[(2 x+2)-\left(-x+\frac{1}{2}\right)\right] \mathrm{dx} \\
& =\frac{3 x^{2}}{2}+\left.\frac{3 x}{2}\right|_{1} ^{3}=15
\end{aligned}
$$

$=\left[3 \frac{x^{2}}{2}+\left.\frac{3}{2} x\right|_{1} ^{3}=\left(\frac{27}{2}+\frac{9}{2}\right)-\left(\frac{3}{2}+\frac{3}{2}\right)=18-3=15\right.$
2. With x integration first

$$
\begin{aligned}
& \iint(x+y) d A=\int_{-1}^{2} \int_{1}^{3}(x+y) d x d y \\
& \quad=\int_{-1}^{2}\left[\left.\left(\frac{x^{2}}{2}+y x\right)\right|_{1} ^{3}\right] d y
\end{aligned}
$$

Example:

Evaluate $\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y$
Solution

1. With x integration first

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y=\left.\int_{0}^{1}\left(\frac{x^{3}}{3}+x y^{2}\right)\right|_{1} ^{0} d y \\
= & \int_{0}^{1}\left(\frac{1}{3}+y^{2}\right) d y=\left.\left(\frac{1}{3} y+\frac{y^{3}}{3}\right)\right|_{0} ^{1}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

2. With y integration first:

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) d y d x \\
= & \left.\int_{0}^{1}\left[x^{2} y+\frac{y^{3}}{3}\right]\right|_{0} ^{1} d x=\int_{0}^{1}\left(x^{2}+\frac{1}{3}\right) d x \\
= & \left.\left(\frac{x^{3}}{3}+\frac{1}{3} \mathrm{x}\right)\right|_{0} ^{1}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

Example:-

Evaluate $\int_{1}^{3} \int_{0}^{2} e^{2 x+y} d y d x$

Solution

1. With y integration first:

$$
\begin{aligned}
& \int_{1}^{3} \int_{0}^{2} \mathrm{e}^{2 \mathrm{x}} \mathrm{e}^{\mathrm{y}} \mathrm{dydx}=\int_{1}^{3}\left[\left.\mathrm{e}^{2 \mathrm{x}} \mathrm{e}^{\mathrm{y}}\right|_{0} ^{2} \mathrm{dx}\right. \\
& =\int_{1}^{3}\left[\mathrm{e}^{2 \mathrm{x}}\left(\mathrm{e}^{2}-1\right)\right] \mathrm{dx}=\left(\mathrm{e}^{2}-1\right) \int_{1}^{3} \mathrm{e}^{2 \mathrm{x}} \mathrm{dx} \\
& =\left(\mathrm{e}^{2}-1\right)\left[\left.\frac{1}{2} \mathrm{e}^{2 \mathrm{x}}\right|_{1} ^{3}=\left(\mathrm{e}^{2}-1\right) * \frac{1}{2}\left(\mathrm{e}^{6}-\mathrm{e}^{2}\right)\right.
\end{aligned}
$$

2. With x integration first

$$
\begin{aligned}
& \int_{0}^{2} \int_{1}^{3} \mathrm{e}^{2 \mathrm{x}} \mathrm{e}^{\mathrm{y}} \mathrm{dxdy}=\int_{0}^{2}\left[\mathrm{e}^{\mathrm{y}} \cdot \frac{1}{2} \mathrm{e}^{2 \mathrm{x}}\right]_{1}^{3} \mathrm{dy} \\
& =\int_{0}^{2} \frac{\mathrm{e}^{\mathrm{y}}}{2}\left[\mathrm{e}^{6}-\mathrm{e}^{2}\right] \mathrm{dy}=\left(\frac{\mathrm{e}^{6}-\mathrm{e}^{2}}{2}\right) \int_{0}^{2} \mathrm{e}^{\mathrm{y}} \mathrm{dy} \\
& =\left(\frac{\mathrm{e}^{6}-\mathrm{e}^{2}}{2}\right)\left[\left.\mathrm{e}^{\mathrm{y}}\right|_{0} ^{2}=\left(\frac{\mathrm{e}^{6}-\mathrm{e}^{2}}{2}\right) \times\left(\mathrm{e}^{2}-1\right)\right.
\end{aligned}
$$

Example:-

Evaluate $\int_{2}^{4} \int_{1}^{2} 6 x^{2} \mathbf{d y d x}$.

Solution

1. With y integration first

$$
\begin{aligned}
& \int_{2}^{4}\left[\left.2 x y^{3}\right|_{1} ^{2} d x=\int_{2}^{4}[16 x-2 x] d x\right. \\
& =\int_{2}^{4} 14 x d x=\left[\left.7 x^{2}\right|_{2} ^{4}=112-28=84\right.
\end{aligned}
$$

2. With x integration first

$$
\begin{aligned}
& \int_{1}^{2} \int_{2}^{4} 6 x y^{2} \mathrm{dxdy}=\int_{1}^{2}\left[\left.3 \mathrm{x}^{2} \mathrm{y}^{2}\right|_{2} ^{4} \mathrm{dy}\right. \\
& \quad=\int_{1}^{2}\left[48 y^{2}-12 y^{2}\right] d y=\int_{1}^{2} 36 y^{2} d y=\left[\left.12 y^{3}\right|_{1} ^{2}=96-12=84\right.
\end{aligned}
$$

Example:-

Evaluate $\int_{1}^{2} \int_{0}^{1} \frac{1}{(2 x+3 y)^{2}} d x d y$

Solution

1. With x integration first

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{1}(2 x+3 y)^{-2} d x d y=\int_{1}^{2}\left[\left.\frac{-1}{2}(2 x+3 y)^{-1}\right|_{0} ^{1} d y\right. \\
& =-\frac{1}{2} \int_{1}^{2}\left[\frac{1}{2+3 y}-\frac{1}{3 y}\right] d y=-\frac{1}{2} \int_{1}^{2}\left[\frac{1}{3} \frac{3}{2+3 y}-\frac{1}{3} \frac{3}{3 y}\right] d y \\
& =-\frac{1}{6}[\ln (2+3 y)-\ln (3 y)]_{1}^{2}=-\frac{1}{6}[(\ln 8-\ln 6)-(\ln 5-\ln 3)] \\
& =-\frac{1}{6}[\ln 8-\ln 6-\ln 5+\ln 3]=-\frac{1}{6}[\ln 8-\ln 5-\ln 2]
\end{aligned}
$$

2. With y integration first

$$
\begin{aligned}
& \int_{0}^{1} \int_{1}^{2}(2 x+3 y)^{-2} d y d x=\int_{0}^{1}\left[-\left.\frac{1}{3}(2 x+3 y)^{-1}\right|_{1} ^{2} d x\right. \\
& =-\frac{1}{3} \int_{0}^{1}\left[\frac{1}{2 x+6}-\frac{1}{2 x+3}\right] d x=-\frac{1}{3}\left[\frac{1}{2} \ln (2 x+6)-\frac{1}{2} \ln (2 x+3)\right]_{0}^{1} \\
& =-\frac{1}{6}[(\ln 8-\ln 5)-(\ln 6-\ln 3)]=-\frac{1}{6}[\ln 8-\ln 5-\ln 2]
\end{aligned}
$$

Example:-

Evaluate $\int_{0}^{1} \int_{-1}^{2} \mathrm{xe}^{\mathrm{xy}} \mathrm{dxdy}$

Solution

With x integration first
$\int_{0}^{1} \int_{-1}^{2} \mathrm{xe}^{\mathrm{xy}} \mathrm{dxdy}=\int_{0}^{1}\left[\frac{x}{y} e^{x y}-\frac{1}{y^{2}} e^{x y}\right]_{-1}^{2} d y$

$=\int_{0}^{1}\left[\left(\frac{2}{y} e^{2 y}-\frac{1}{y^{2}} e^{2 y}\right)-\left(\frac{-1}{y} e^{-y}-\frac{1}{y^{2}} e^{-y}\right)\right] d y$
We are not even going to continue here as these are very difficult integrals to do , Then complete integration solution with y first .

$$
\begin{aligned}
\int_{-1}^{2} \int_{0}^{1} \mathrm{xe}^{\mathrm{xy}} \mathrm{dydx} & =\int_{-1}^{2}\left[\mathrm{e}^{\mathrm{xy}}\right]_{0}^{1} \mathrm{dx} \\
& =\int_{-1}^{2}\left[\mathrm{e}^{\mathrm{x}}-1\right] \mathrm{dx}=\left.\left[\mathrm{e}^{\mathrm{x}}-\mathrm{x}\right]\right|_{-1} ^{2} \\
& =\left(e^{2}-2\right)-\left(e^{-1}+1\right)=e^{2}-e^{-1}-3
\end{aligned}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Multiple Integrals
c. Central Ideas:

Double Integrals for Bounded Non Rectangular Regions

d. Objectives: after the end of courses the student will be able to: solve Double Integrals for Bounded Non Rectangular Regions
pre test

$$
\text { Q1 Evaluate } \int_{1}^{2} \int_{y}^{y^{3}} e^{\frac{x}{y}} d x d y
$$

-Double Integrals for Bounded Non Rectangular Regions

a. $\iint f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{f(x)} f(x, y) d y d x$
b. $\iint f(x, y) d A=\int_{c}^{d} \int_{g(x)}^{f(x)} f(x, y) d x d y$

- If the limits of integration are constant, the region is rectangular.
- If the limits of integration are not constant, the region is non-rectangular.

Example:-

Integrate the function $f(x, y)=x^{2} y$ over the region on bounded by

$$
y=x^{2}, x=0, x=1 y=0
$$

Solution

1. With y integration first

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\mathrm{x}^{2}} \mathrm{x}^{2} \mathrm{ydydx}=\int_{0}^{1} \mathrm{x}^{2}\left[\left.\frac{\mathrm{y}^{2}}{2}\right|_{0} ^{\mathrm{x}^{2}} \mathrm{dx}\right. \\
& =\int_{0}^{1} \frac{x^{6}}{2} d x=\left.\frac{x^{7}}{14}\right|_{0} ^{1}=\frac{1}{14}
\end{aligned}
$$

2. With x integration first

$$
\begin{aligned}
& \int_{0}^{1} \int_{\sqrt{y}}^{1} \mathrm{x}^{2} \mathrm{ydxdy}=\int_{0}^{1} \mathrm{y}\left[\left.\frac{\mathrm{x}^{3}}{3}\right|_{\sqrt{y}} ^{1} \mathrm{dy}\right. \\
= & \int_{0}^{1}\left[\frac{y}{3}-\frac{y y^{3 / 2}}{3}\right] d y=\int_{0}^{1}\left[\frac{y}{3}-\frac{y^{5 / 2}}{3}\right] d y=\left[\frac{y^{2}}{6}-\left.\frac{2 y^{7 / 2}}{21}\right|_{0} ^{1}\right.
\end{aligned}
$$

$$
=\frac{1}{6}-\frac{2}{21}=\frac{1}{14}
$$

Example:-

Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} x \cos y d y d x$

Solution

1. With y integration first.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x^{2}} x \cos y d y d x=\int_{0}^{1} \mathrm{x}\left[\left.\sin y\right|_{0} ^{\mathrm{x}^{2}} \mathrm{dx}=\int_{0}^{1} \mathrm{x} \sin \mathrm{x}^{2} \mathrm{dx}\right. \\
& =\left[-\left.\frac{1}{2} \cos x^{2}\right|_{0} ^{1}=-\frac{1}{2}[\cos 1-\cos 0]=\frac{1}{2}[1-\cos 1]\right.
\end{aligned}
$$

2. With x integration first.

$$
\begin{aligned}
& \int_{0}^{1} \int_{\sqrt{y}}^{1} x \cos y d x d y=\int_{0}^{1}\left[\cos y\left[\frac{x^{2}}{2}\right]_{\sqrt{y}}^{1} d y=\int_{0}^{1} \cos y\left(\frac{1}{2}-\frac{y}{2}\right) d y\right. \\
& =\int_{0}^{1}\left[\frac{1}{2} \cos y-\frac{y}{2} \cos y\right] d y=\left[\frac{1}{2} \sin y-\frac{1}{2}(y \sin y+\cos y)\right]_{0}^{1} \\
& \frac{1}{2} \sin 1-\frac{1}{2} \sin 1-\frac{1}{2} \cos 1-\left(\frac{1}{2} \sin 0-\frac{1}{2}(0+\cos 0)\right) \\
& =-\frac{1}{2} \cos 1+\frac{1}{2}=\frac{1}{2}(1-\cos 1)
\end{aligned}
$$

Example:-

Evaluate $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$

Solution

The integration $\int e^{x^{2}} d x$ cannot be solving analytically, We reverse the order and sketch the region.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x} e^{x^{2}} \mathbf{d y d x}=\left.\int_{0}^{1} e^{x^{2}}\right|_{\mathbf{0}} ^{x} y d x=\int_{0}^{1} e^{x^{2}} x \mathbf{d x} \\
& \left.\frac{1}{2} e^{x^{2}}\right|_{0} ^{1}=\frac{1}{2}\left(e^{1}-e^{0}\right)=\frac{1}{2}\left(e^{1}-1\right)
\end{aligned}
$$

Example:-

Reverse the order of integration and evaluate the resulting integral
$1-\int_{0}^{4} \int_{\sqrt{y}}^{2} y \cos x^{5} d x d y$
Solution

$$
\begin{aligned}
& \boldsymbol{x}=\sqrt{\boldsymbol{y}} \Rightarrow \boldsymbol{y}=\boldsymbol{x}^{2} \\
& 0 \leq x \leq 2 \text { and } 0 \leq y \leq x^{2} \\
& \quad \int_{0}^{4} \int_{\sqrt{y}}^{2} y \cos x^{5} \mathrm{dx} \mathrm{dy}=\int_{0}^{2} \int_{0}^{x^{2}} y \cos x^{5} d y d x
\end{aligned}
$$

$\left.\int_{0}^{2} \frac{1}{2} y^{2} \cos x^{5}\right|_{0} ^{x^{2}} d x=\int_{0}^{2} \frac{1}{2} x^{4} \cos x^{5} d x=\left.\frac{1}{2}\left[\frac{\sin x^{5}}{5}\right]\right|_{0} ^{2}=\frac{1}{10} \sin 32$
2- $\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x$

$$
y=x^{2} \Rightarrow x=\sqrt{y}
$$

From the figure we get

$$
\begin{aligned}
& 0 \leq \mathrm{x} \leq \sqrt{\mathrm{y}} \text { and } 0 \leq \mathrm{y} \leq 9 \\
& \int_{0}^{3} \int_{\mathrm{x}^{2}}^{9} \mathrm{x}^{3} \mathrm{e}^{\mathrm{y}^{3}} \mathrm{dydx}=\int_{0}^{9} \int_{0}^{\sqrt{\mathrm{y}}} \mathrm{x}^{3} \mathrm{e}^{\mathrm{y}^{3}} \mathrm{dxdy} \\
& =\left.\int_{0}^{9} \frac{1}{4} \mathrm{x}^{4} \mathrm{e}^{\mathrm{y}^{3}}\right|_{0} ^{\sqrt{\mathrm{y}}} \mathrm{dy}=\int_{0}^{9} \frac{1}{4} \mathrm{y}^{2} \mathrm{e}^{\mathrm{y}^{3}} \mathrm{dy}=\frac{1}{4} * \frac{1}{3}\left[\left.\mathrm{e}^{\mathrm{y}^{3}}\right|_{0} ^{9}\right. \\
& =\frac{1}{12}\left(\mathrm{e}^{729}-\mathrm{e}^{0} 2\right.
\end{aligned}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Multiple Integrals
c. Central Ideas:

- Double integral over Rectangular Region
d. Objectives: after the end of courses the student will be able to:
solve Double integral over Rectangular Region
pre test
Q1 Find the area of the (bounded) region between the line $y=2 x$ and the curve

$$
y=\frac{1}{2} x^{2}
$$

Area Calculated as a Double Integral

Let R be region in the xy - plane, then the area of this region is Area $=\mathrm{A}=\iint_{R} \mathrm{dA}$

1. If R has the shape

2. If R has the shape

Example:-

Use a double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$

Solution
$A=\iint_{R} d A=\int_{0}^{Y} \int_{\frac{x^{2}}{2}}^{2 x} d y d x$
$\int_{0}^{4}\left(2 x-\frac{x^{2}}{2}\right) d x=\left.\left(x^{2}-\frac{x^{3}}{6}\right)\right|_{0} ^{4}=\frac{16}{3}$

Example:-
Find the area of the region R bounded by $y=x$ and $y=x^{2}$ in the first quadrant
Solution
$A=\iint_{R} d A=\int_{0}^{1} \int_{x^{2}}^{x} d y d x$
$\int_{0}^{1}\left(x-x^{2}\right) d x=\left.\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=\frac{1}{6}$

Example:- Sketch the region bounded by tt

find it area:

1- $\mathbf{y}=\mathbf{0}, \mathrm{x}=\mathbf{0}, \mathrm{x}+\mathrm{y}=\mathbf{a}$
Solution
$x+y=a \Rightarrow y=a-x$
$A=\int_{0}^{a} \int_{0}^{a-x} d y d x$

$$
\left.\int_{0}^{a} y\right|_{0} ^{a-x} d x=\int_{0}^{a}(a-x) d x=a x-\left.\frac{x^{2}}{2}\right|_{0} ^{a}=a^{2}-\frac{a^{2}}{2}
$$

2- $x=\frac{\pi}{2}, y=\cos x, y=\sin x$

Solution

$A=\int_{0}^{\frac{\pi}{4}} \int_{\sin x}^{\cos x} d y d x$

The intersection point will be where

$$
\cos x=\sin x
$$

The area is then

$A=\int_{0}^{\frac{\pi}{4}} \int_{\sin x}^{\cos x} d y d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{\sin x}^{\cos x} d y d x$
$A=\int_{0}^{\frac{\pi}{4}} \cos x-\sin x d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x-\cos x d x$
$\mathrm{A}=\left.(\sin x+\cos x)\right|_{0} ^{\frac{\pi}{4}}+\left.(-\cos x-\sin x)\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}$
$\mathrm{A}=\sqrt{2}-1+\sqrt{2}-1=2 \sqrt{2}-2=2(\sqrt{2}-1)$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.

b. Rationale: we will understand Multiple Integrals

c. Central Ideas:

Converting Cartesian Integrals to Polar Integrals

d. Objectives: after the end of courses the student will be able to:

solve Double integral over Rectangular Region

pre test
Q1 Evaluate $\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y$

Converting Cartesian Integrals to Polar Integrals

To convert Cartesian integrals to polar integrals, we make the substitution $x=r \cos \theta$ and $y=r \sin \theta$, and replace $d y d x$ with $r d r d \theta$ Then we must change the Cartesian limits to polar limits.

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example:

Evaluate the double integral by polar coordinate $\iint x^{2}+y^{2} d x d y$, where R is the region in the first quadrant and bounded by $x^{2}+y^{2}=1$.
Solution

$$
\begin{aligned}
& \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \mathrm{r}^{2}=1 \Longrightarrow \mathrm{r}=1 \\
& \begin{aligned}
\therefore \iint x^{2}+y^{2} \mathrm{dx} d y & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{2} \mathrm{rdrd} \theta \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{3} \mathrm{dr} \mathrm{~d} \theta \\
& =\left.\int_{0}^{\frac{\pi}{2}} \frac{r^{4}}{4}\right|_{0} ^{1} \mathrm{~d} \theta \\
& =\int_{0}^{\frac{\pi}{2}} \frac{1}{4} \mathrm{~d} \theta \\
& =\left.\frac{\theta}{4}\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi}{8}
\end{aligned}
\end{aligned}
$$

Example:

Evaluate the double integral by polar coordinate $\iint e^{x^{2}+y^{2}} d A$, where R is the region in the first quadrant and bounded by $x^{2}+y^{2}=1$.

Solution

$\therefore \iint \boldsymbol{e}^{x^{2}+\boldsymbol{y}^{2}} \mathrm{dA}=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} e^{r^{2}} \mathrm{rdrd} \theta$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} 2 r e^{r^{2}} \mathrm{dr} \mathrm{~d} \theta \\
= & \left.\frac{1}{2} \int_{0}^{\frac{\pi}{2}} e^{r^{2}}\right|_{0} ^{1} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\left(e^{1}-1\right) \mathrm{d} \theta \\
= & \frac{1}{2}\left[\left.(e-1) \theta\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi}{4}(e-1)\right.
\end{aligned}
$$

Example:

Evaluate the integral using polar coordinate $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$ Solution
$\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{2} \mathrm{rdrd} \theta$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{3} \mathrm{drd} \theta=\left.\int_{0}^{\frac{\pi}{2}} \frac{r^{4}}{4}\right|_{0} ^{2} \mathrm{~d} \theta \\
& =\int_{0}^{\frac{\pi}{2}} 4 \mathrm{~d} \theta=\left.4 \theta\right|_{0} ^{\frac{\pi}{2}}=2 \pi
\end{aligned}
$$

Example:

Evaluate the double integral by polar coordinate $\iint 3 x+4 y^{2}$ dA Where $x^{2}+y^{2}=1, x^{2}+y^{2}=4, y \geq 0$

Solution

$$
\begin{aligned}
& \left\{1 \leq x^{2}+y^{2} \leq 4\right\} \\
& x^{2}+y^{2} \\
& 1 \Rightarrow r=1 \\
& 4 \Rightarrow r=2
\end{aligned}
$$

$\iint 3 x+4 y^{2}=\int_{0}^{\pi} \int_{1}^{2}\left(3 r \cos \theta+4 r^{2} \sin ^{2} \theta\right) \mathrm{r} \mathrm{dr} \mathrm{d} \theta$

$$
\begin{aligned}
& =\int_{0}^{\pi} \int_{1}^{2}\left(3 r^{2} \cos \theta+4 r^{3} \sin ^{2} \theta\right) \mathrm{dr} \mathrm{~d} \theta \\
& =\int_{0}^{\pi}\left[r^{3} \cos \theta+\left.r^{4} \sin ^{2} \theta\right|_{1} ^{2} \mathrm{~d} \theta\right. \\
& =\int_{0}^{\pi}\left[8 \cos \theta+16 \sin ^{2} \theta-\left(\cos \theta+\sin ^{2} \theta\right)\right] \mathrm{d} \theta \\
& =\int_{0}^{\pi}\left[7 \cos \theta+15 \sin ^{2} \theta\right] \mathrm{d} \theta \\
& =\int_{0}^{\pi}\left[7 \cos \theta+\frac{15}{2}(1-\cos 2 \theta)\right] \mathrm{d} \theta \\
& =7 \sin \theta+\frac{15}{2}\left(\theta-\left.\frac{1}{2} \sin 2 \theta\right|_{0} ^{\pi}=\frac{15}{2} \pi\right.
\end{aligned}
$$

H.W

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Multiple Integrals
c. Central Ideas:

Converting Cartesian Integrals to Polar Integrals

d. Objectives: after the end of courses the student will be able to:
solve Double integral over Rectangular Region
pre test
Q1 Evaluate $\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y$
Surface Area
If $f(x, y, z)=c$ is surface then :
$\mathrm{S}=$ surface Area $=\iint_{R} \frac{|\nabla \overrightarrow{\mathbf{f}}|}{\mid \nabla \overrightarrow{\mathbf{f} . \overrightarrow{\mathrm{n}} \mid}} d A$
Where $\boldsymbol{\rightharpoonup} \boldsymbol{n}$ is the unit normal vector project on the plane

R : is the projected region

Example:-Find the surface area of the upper cut from the sphere $\boldsymbol{x}^{2}+y^{2}+$ $z^{2}=2$ by the cylinder $x^{2}+y^{2}=1$

Sol:-

$$
\begin{aligned}
& f(x, y, z)=x^{2}+y^{2}+z^{2}=2 \\
& \\
& f_{x}=2 x, f_{y}=2 y, f_{z}=2 z
\end{aligned}
$$

$$
\therefore \overrightarrow{\nabla f}=2 x i+2 y j+2 z k
$$

$$
|\overrightarrow{\nabla f}|=\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}=2 \sqrt{x^{2}+y^{2}+z^{2}}=2 \sqrt{2}
$$

Taking $\vec{n}=k$ is a unit vector normal to the $\mathrm{x}-\mathrm{y}$ plane

$$
\begin{gathered}
\overrightarrow{\nabla f \cdot \vec{n}=2 z \Rightarrow|\overrightarrow{\nabla f} \cdot \vec{n}|=|2 z|=2 z} \\
s=\iint_{R} \frac{|\nabla \overrightarrow{\mathbf{f}}|}{\left\lvert\, \nabla \overrightarrow{\mathrm{f} \cdot \overrightarrow{\mathrm{n}} \mid} d A=\iint_{R} \frac{2 \sqrt{2}}{2 z} d A=\iint_{R} \frac{\sqrt{2}}{z} d A\right.} \begin{array}{c}
x^{2}+y^{2}+z^{2}=2 \Rightarrow z^{2}=2-x^{2}-y^{2} \Rightarrow z=\sqrt{2-x^{2}-y^{2}} \\
s=\iint_{R} \frac{\sqrt{2}}{z} d A=\iint_{R} \frac{\sqrt{2}}{\sqrt{2-x^{2}-y^{2}}} d A
\end{array} .
\end{gathered}
$$

Since R is the circle $x^{2}+y^{2}=1$

$$
\begin{aligned}
s=\sqrt{2} \int_{0}^{2 \pi} & \int_{0}^{1} \frac{r d r d \theta}{\sqrt{2-r^{2}}} \\
& =\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{1}\left(2-r^{2}\right)^{-\frac{1}{2}} r d r d \theta \\
& =\left.\sqrt{2} \int_{0}^{2 \pi} \frac{1 / 2\left(2-r^{2}\right)^{-\frac{1}{2}}}{1 / 2}\right|_{0} ^{1} d \theta=\sqrt{2} \int_{0}^{2 \pi}(1-\sqrt{2}) d \theta \\
& =\sqrt{2}(1-\sqrt{2}) \int_{0}^{2 \pi} d \theta=\left.(2-\sqrt{2}) \theta\right|_{0} ^{2 \pi}=(2-\sqrt{2}) 2 \pi
\end{aligned}
$$

Example :- Find the surface area cut from the plane $2 x-y+3 z=6$ by the cylinder $x^{2}+z^{2}=4$

Sol:-

$$
\begin{aligned}
& \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \mathbf{z})=\mathbf{2 x}-\boldsymbol{y}+3 \boldsymbol{z}=6 \\
& f_{x}=2, f_{y}=-1, f_{z}=3 \\
& \therefore \overrightarrow{\nabla f}=2 i-j+3 k \\
&|\overrightarrow{\nabla f}|=\sqrt{4+1+9}=\sqrt{14}
\end{aligned}
$$

Taking $\vec{n}=j$ is a unit vector normal to the x -zplane

$$
\begin{aligned}
& \overrightarrow{\nabla f} \cdot \vec{n}=-1 \Rightarrow|\overrightarrow{\nabla f} \cdot \vec{n}|=|-1|=1 \\
& s=\iint_{R} \frac{|\nabla \overrightarrow{\mathrm{f}}|}{\mid \nabla \overrightarrow{\mathrm{f} . \overrightarrow{\mathrm{n}} \mid}} d A=\iint_{R} \sqrt{14} d A
\end{aligned}
$$

Since R is the circle $x^{2}+z^{2}=4$

$$
\begin{aligned}
s==\int_{0}^{2 \pi} & \int_{0}^{2} \sqrt{14} r d r d \theta=\left.\sqrt{14} \int_{0}^{2 \pi} \frac{r^{2}}{2}\right|_{0} ^{2} d \theta=\left.\frac{\sqrt{14}}{2} \int_{0}^{2 \pi} r^{2}\right|_{0} ^{2} d \theta \\
& =\frac{\sqrt{14}}{2} \int_{0}^{2 \pi} 4 d \theta=\sqrt{2}=\frac{4 \sqrt{14}}{2} \int_{0}^{2 \pi} d \theta \\
& =\left.2 \sqrt{14} \theta\right|_{0} ^{2 \pi}=4 \sqrt{14} \pi
\end{aligned}
$$

1- $z=f(x, y)=$ then $s=\iint_{R} \sqrt{1++\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A$
2- $x=f(y, z)=$ then $s=\iint_{R} \sqrt{1++\left(f_{y}\right)^{2}+\left(f_{z}\right)^{2}} d A$
3- $y=f(x, y)=$ then $s=\iint_{R} \sqrt{1++\left(f_{x}\right)^{2}+\left(f_{z}\right)^{2}} d A$
Example:- Find the surface area of the plane $z=x^{2}+y^{2}$ from $z=1$ to $z=4$

Sol:-

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2} \\
& f_{x}=2 x, f_{y}=2 y \\
& s=\iint_{R} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A=\iint_{R} \sqrt{1+4 x^{2}+4 x y^{2}} d A
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{1}^{2} \sqrt{1+4 r^{2}} r d r d \theta=\left.\int_{0}^{2 \pi} \frac{1}{8} * \frac{\left(1+4 r^{2}\right)^{3 / 2}}{3 / 2}\right|_{0} ^{2} d \theta \\
=\frac{1}{12} \int_{0}^{2 \pi}\left[(1+16)^{3 / 2}-(5)^{3 / 2}\right] d \theta=4.91 \int_{0}^{2 \pi} d \theta=\left.4.91 \theta\right|_{0} ^{2 \pi} \\
=4.91 * 2 \pi
\end{gathered}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.
b. Rationale: we will understand Multiple Integrals

c. Central Ideas:

Converting Cartesian Integrals to Polar Integrals

d. Objectives: after the end of courses the student will be able to:
solve Double integral over Rectangular Region
pre test
Q1 Evaluate $\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) d x d y$

Greens theorem

Let C be appositive oriented, piece wise smooth, simple closed curve and let D be the region enclosed by the curve .If M and N have continuous first partial derivatives on D then

$$
\oint_{C} M d x+N d y=\iint_{D} \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} d A
$$

Example:-

Use Green's theorem to evaluate $\oint_{C} x y d x+x^{2} y^{3} d y$ where \mathbf{C} is the triangle with vertices $(0,0),(1,0),(1,2)$ with positive orientation

Solution

$$
\begin{aligned}
& m=\frac{2-0}{1-0}=2 \\
& y-y_{0}=m\left(x-x_{0}\right) \\
& y=2 x \\
& M=x y \text { and } N=x^{2} y^{3} \\
& \oint_{C} x y d x+x^{2} y^{3} d y=\iint\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\iint\left(2 x y^{3}-x\right) d A \\
& \int_{0}^{1} \int_{0}^{2 x}\left(2 x y^{3}-x\right) d y d x \\
& \int_{0}^{1} \int_{0}^{2 x}\left(2 x y^{3}-x\right) d y d x=\left.\int_{0}^{1}\left(\frac{x y^{4}}{2}-x y\right)\right|_{0} ^{2 x} d x \\
& \int_{0}^{1}\left(8 x^{5}-2 x^{2}\right) d x=\frac{2}{3}
\end{aligned}
$$

Example:-

Evaluate $\oint_{C} y^{3} d x-x^{3} d y$ where \mathbf{C} is the positively oriented circle of radius 2 centered at the origin solution

$$
M=y^{3} \text { and } N=-x^{3}
$$

$$
\begin{aligned}
& \oint_{C} y^{3} d x-x^{3} d y=\iint\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A=\iint\left(-3 x^{2}-3 y^{2}\right) d A \\
&=-3 \iint^{2}\left(x^{2}+y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{3}\right) d r d \theta \\
&=-\left.3 \int_{0}^{2 \pi}\left(\frac{r^{4}}{4}\right)\right|_{0} ^{2} d \theta=-24 \pi
\end{aligned}
$$

H.W:-

1-Evaluate $\oint_{C}-y d x+x^{3} d y$ where \mathbf{C} are the two circle of radius 2 and radius 1 centered at the origin with positive orientation.

2-Use Green's theorem to evaluate $\oint_{C}-y d x+x d y$ where \mathbf{C} is the circumference of circle $x^{2}+y^{2}=\mathbf{1}$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.

b. Rationale: we will understand Series

c. Central Ideas:
d. Objectives: after the end of courses the student will be able to:
find the nt term of series

- Test convergie the series
pre test
The following infinite series $\left(12+4+\frac{4}{3}+\frac{4}{9}+\cdots\right)$ (converges /diverges) because \qquad

Sequences and Series

Sequences of Numbers

A sequence of numbers is a function whose domain is the set of positive inte

Example

$0,1,2$, . . $n-1$, . . for a sequence whose defining rule is $a_{n}=$ $1, \frac{1}{2}, \frac{1}{3}, . . \frac{1}{n}, \ldots$ for a sequence whose defining rule is $a_{n}=$ The index n is the domain of the sequence. While the numbers in the rang, sequence are called the terms of the sequence, and the number a_{n} being called term, or the term with index n.

Example $a_{n}=\frac{n+1}{n} \quad$ then the terms are

$$
\begin{array}{ccccc}
1^{\text {st }} \text { term } & 2^{\text {nd }} \quad \text { term } & 3^{\text {rd }} \text { term } & n^{\text {th }} \text { term } \\
a_{1}=2, & a_{2}=\frac{3}{2}, & a_{3}=\frac{4}{3}, & . \quad a_{n}=\frac{n+1}{n},
\end{array}
$$

and we use the notation $\left\{a_{n}\right\}$ as the sequence a_{n}.

Example

Find the first five terms of the following:
(a) $\left\{\frac{2 n-1}{3 n+2}\right\}$,
(b) $\left\{\frac{1-(-1)^{n}}{n^{3}}\right\}$,
(c) $\left\{(-1)^{n+1} \frac{x^{2 n-1}}{(2 n-1)!}\right\}$

Solution

(a) $\frac{1}{5}, \frac{3}{8}, \frac{5}{11}, \frac{7}{14}, \frac{9}{17}$
(b) $2,0, \frac{2}{27}, 0, \frac{2}{125}$
(c) $x, \frac{-x^{3}}{3!}, \frac{x^{5}}{5!}, \frac{-x^{7}}{7!}, \frac{x^{9}}{9!}$

Example

Find the $\mathrm{n}^{\text {th }}$-term of the following:
(a) $0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}$,
(b) $0, \frac{\ln 2}{2}, \frac{\ln 3}{3}, \frac{\ln 4}{4}$,
(c) $0, \frac{1}{4}, \frac{2}{9}, \frac{3}{16}$,
(d) $2,1, \frac{2^{3}}{3^{2}}, \frac{2^{4}}{4^{2}}, \frac{2^{5}}{5^{2}}$

Solution

(a) $a_{n}=\frac{n-1}{n}$,
(b) $a_{n}=\frac{\ln n}{n}$,
(c) $a_{n}=\frac{n-1}{n^{2}}$,
(d) $a_{n}=\frac{2^{n}}{n^{2}}$

Convergence of Sequences

The fact that $\left\{a_{n}\right\}$ converges to L is written as

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

and we call the limit of the sequence $\left\{a_{n}\right\}$. If no such limit exists, we say that $\left\{a_{n}\right\}$ diverges.

From that we can say that

1) $\lim _{n \rightarrow \infty} a_{n}=L$
(Conv.)
2) $\lim _{n \rightarrow \infty} a_{n}=\infty$
(Div.)
3) $\lim _{n \rightarrow \infty} a_{n}=\left\{\begin{array}{l}L_{1} \\ L_{2}\end{array}\right.$

Also, if $A=\lim _{n \rightarrow \infty} a_{n}$ and $B=\lim _{n \rightarrow \infty} b_{n}$ both exist and are finite, then
i) $\lim _{n \rightarrow \infty}\left\{a_{n}+b_{n}\right\}=A+B$
ii) $\lim _{n \rightarrow \infty}\left\{k a_{n}\right\}=k A$
iii) $\lim _{n \rightarrow \infty}\left\{a_{n} \cdot b_{n}\right\}=A \cdot B$
iv) $\lim _{n \rightarrow \infty}\left\{\frac{a_{n}}{b_{n}}\right\}=\frac{A}{B}, \quad$ provided $B \neq 0$ and b_{n} is never 0

Example

Test the convergence of the following:
(a) $\left\{\frac{1}{n}\right\}$,
(b) $\left\{1+(-1)^{n}\right\}$,
(c) $\left\{n^{2}\right\}$,
(d) $\{\sqrt{n+1}-\sqrt{n}\}$,
(e) $\left\{\frac{3 n^{2}-5 n}{5 n^{2}+2 n+6}\right\}$,
(f) $\left\{\frac{3 n^{2}-4 n}{2 n-1}\right\}$,
(g) $\left\{\left(\frac{2 n-3}{3 n-7}\right)^{4}\right\}$,
(h) $\left\{\frac{2 n^{5}-4 n^{2}}{3 n^{7}+n^{2}-10}\right\}$,
(i) $\left\{\frac{2^{n}}{5 n}\right\}$,
(j) $\left\{\frac{\ln n}{e^{n}}\right\}$

Solution

(a) $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)=0$

(Conv.)

(b) $\lim _{n \rightarrow \infty}\left(1+(-1)^{n}\right)=1+\lim _{n \rightarrow \infty}(-1)^{n}= \begin{cases}0 & n \text { odd } \\ 2 & n \text { even }\end{cases}$ (Div.)
(c) $\lim _{n \rightarrow \infty}\left(n^{2}\right)=\infty$
(Div.)
(d) $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=\lim _{n \rightarrow \infty}\left((\sqrt{n+1}-\sqrt{n}) \times \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\right)$

$$
=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n+1}+\sqrt{n}}\right)=\frac{1}{\infty+\infty}=0
$$

(Conv.)

Infinite Series

Infinite series are sequences of a special kind: those in which the $n^{\text {th }}$-term is th sum of the first n terms of a related sequence.

Example

Suppose that we start with the sequence

$$
1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \ldots
$$

If we denote the above sequence as a_{n}, and the resultant sequence of the series as s_{n} then

$$
\begin{aligned}
& s_{1}=a_{1}=1, \\
& s_{2}=a_{1}+a_{2}=1+\frac{1}{2}=\frac{3}{2}, \\
& s_{3}=a_{1}+a_{2}+a_{3}=1+\frac{1}{2}+\frac{1}{4}=\frac{7}{4},
\end{aligned}
$$

as the first three terms of the sequence $\left\{s_{n}\right\}$.
When the sequence $\left\{s_{n}\right\}$ is formed in this way from a given sequence $\left\{a_{n}\right\}$ by th rule

$$
s_{n}=a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k}
$$

the result is called an Infinite Series.
$*$ The number $s_{n}=\sum_{k=1}^{n} a_{k}$ is called the $n^{\text {th }}$ partial sum of the series.
$*$ Instead of $\left\{s_{n}\right\}$, we usually write $\sum_{n=1}^{\infty} a_{n}$ or simply $\sum a_{n}$.

* The series $\sum a_{n}$ is said to converge to a number L if and only if

$$
L=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

in which case we call L the sum of the series and write

$$
\sum_{n=1}^{\infty} a_{n}=L \quad \text { or } \quad a_{1}+a_{2}+\ldots+a_{n}+\ldots=L
$$

If no such limit exists, the series is said to diverge.

Geometric Series

A series of the form

$$
a+a r+a r^{2}+a r^{3}+\ldots++a r^{n-1}+\ldots
$$

is called a Geometric Series. The ratio of any term to the one before it is r. If $|r|<1$, the geometric series converges to $a /(1-r)$. If $|r| \geq 1$, the series diverges unless $a=0$. If $a=0$, the series converges to 0 .

Example

Geometric series with $a=\frac{1}{9}$ and $r=\frac{1}{3}$.

$$
\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots=\frac{1}{9}\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots\right)=\frac{1 / 9}{1-(1 / 3)}=\frac{1}{6}
$$

Geometric series with $a=4$ and $r=-\frac{1}{2}$.

$$
\begin{aligned}
4-2+1-\frac{1}{2}+\frac{1}{4}-\ldots & =4\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\ldots\right) \\
& =\frac{4}{1+(1 / 2)}=\frac{8}{3}
\end{aligned}
$$

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.

b. Rationale: we will understand Series

c. Central Ideas:

Test Convergence of series with Non- negative trems
d. Objectives: after the end of courses the student will be able to:

Test Convergence of series with Non- negative trems pre test
The infinite series $\sum_{n=1}^{\infty} \frac{n+1}{n}$ (converges /diverges) because. \qquad [using the $n^{\text {th }}-$ Term test]

Test Convergence of Series with Non-negative Terms

1) The $n^{\text {th }}$ - Term Test
\star If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, or if $\lim _{n \rightarrow \infty} a_{n}$ fails to exist, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
\star If $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$.
\star If $\lim _{n \rightarrow \infty} a_{n}=0$, then the test fails.

From the above, it can not be concluded that if $a_{n} \rightarrow 0$ then $\sum_{n=1}^{\infty} a_{n}$ converges. The series $\sum_{n=1}^{\infty} a_{n}$ may diverge even though $a_{n} \rightarrow 0$. Thus $\lim _{n \rightarrow \infty} a_{n}=0$ is a necessary but not a sufficient condition for the series $\sum_{n=1}^{\infty} a_{n}$ to converge.

Examples

$\sum_{n=1}^{\infty} n^{2} \quad$ diverges because $n^{2} \rightarrow \infty$,
$\sum_{n=1}^{\infty} \frac{n+1}{n} \quad$ diverges because $\frac{n+1}{n} \rightarrow 1 \neq 0$,
$\sum_{n=1}^{\infty}(-1)^{n+1} \quad$ diverges because $\lim _{n \rightarrow \infty}(-1)^{n+1}$ does not exist,
$\sum_{n=1}^{\infty} \frac{n}{2 n+5} \quad$ diverges because $\lim _{n \rightarrow \infty} \frac{n}{2 n+5}=\frac{1}{2} \neq 0$,
$\sum_{n=1}^{\infty} \frac{1}{n} \quad$ can not be tested by the $\mathrm{n}^{\text {th }}$-term test for divergence because $\frac{1}{n} \rightarrow 0$.

2) The Integral Test

Let the function $y=f(x)$, obtained by introducing the continuous variable x in place of the discrete variable n in the $\mathrm{n}^{\text {th }}$-term of the positive series $\sum_{n=1}^{\infty} a_{n}$, then

$$
\int_{1}^{\infty} f(x) d x=\left\{\begin{array}{cc}
+\infty & \text { Div. } \\
-\infty & \text { Div. } \\
-\infty<c<\infty & \text { Conv. }
\end{array}\right.
$$

Example

Test the convergence of
(a) $\sum_{n=1}^{\infty} \frac{1}{e^{n}}$,
(b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$

Solution

(a) $\int_{1}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{1} ^{\infty}=-\left(e^{-\infty}-e^{-1}\right)=\frac{1}{e}$
(Conv.)
(b) $\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=\int_{2}^{\infty} \frac{1 / x}{(\ln x)^{2}} d x=\left.\frac{-1}{\ln x}\right|_{2} ^{\infty}=\frac{-1}{\infty}+\frac{1}{\ln 2}=\frac{1}{\ln 2}$
(Conv.)

1. Overview

a. Target Population: For students of second stage in college electrical engineering technical college in middle technical university.

b. Rationale: we will understand Series

c. Central Ideas:
d. Objectives: after the end of courses the student will be able to: test the convergies of series
pre test
Q1
Use the integral test to determine the convergence or divergence of the series

3) The Ratio Test

Let $\sum a_{n}$ be a series with positive terms, and suppose that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho
$$

Then
\star The series converges if $\rho<1$,
\star The series diverges if $\rho>1$,

* The series may converge or it may diverge if $\rho=1$. (Test fails)

The Ratio Test is often effective when the terms of the series contain factorials of expressions involving n or expressions raised to a power involving n.

Example

Test the following series for convergence or divergence, using the Ratio Test.
(a) $\sum_{n=1}^{\infty} \frac{n!n!}{(2 n)!}$,
(b) $\sum_{n=1}^{\infty} \frac{4^{n} n!n!}{(2 n)!}$,
(c) $\sum_{n=0}^{\infty} \frac{2^{n}+5}{3^{n}}$,
(d) $\sum_{n=1}^{\infty} \frac{n!}{3^{n}}$,
(e) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$

Solution

(a) If $a_{n}=\frac{n!n!}{(2 n)!}$, then $a_{n+1}=\frac{(n+1)!(n+1)!}{(2 n+2)!}$ and

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{(n+1)!(n+1)!(2 n)!}{n!n!(2 n+2)(2 n+1)(2 n)!}=\frac{(n+1)(n+1)}{(2 n+2)(2 n+1)} \\
& =\frac{n+1}{4 n+2} \rightarrow \frac{1}{4}<1
\end{aligned}
$$

(Conv.)
(b) If $a_{n}=\frac{4^{n} n!n!}{(2 n)!}$, then $a_{n+1}=\frac{4^{n+1}(n+1)!(n+1)!}{(2 n+2)!}$ and

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{4^{n+1}(n+1)!(n+1)!}{(2 n+2)(2 n+1)(2 n)!} \times \frac{(2 n)!}{4^{n} n!n!}=\frac{4(n+1)(n+1)}{(2 n+2)(2 n+1)} \\
& =\frac{2(n+1)}{2 n+1} \rightarrow 1
\end{aligned}
$$

(Test fails)
(c) If $a_{n}=\frac{2^{n}+5}{3^{n}}$, then $a_{n+1}=\frac{2^{n+1}+5}{3^{n+1}}$ and

$$
\begin{align*}
\frac{a_{n+1}}{a_{n}} & =\frac{\left(2^{n+1}+5\right) / 3^{n+1}}{\left(2^{n}+5\right) / 3^{n}}=\frac{1}{3} \times \frac{2^{n+1}+5}{2^{n}+5} \\
& =\frac{1}{3} \times\left(\frac{2+5 \times 2^{-n}}{1+5 \times 2^{-n}}\right) \rightarrow \frac{1}{3} \times \frac{2}{1}=\frac{2}{3}<1 \tag{Conv.}
\end{align*}
$$

(d) If $a_{n}=\frac{n!}{3^{n}}$, then $a_{n+1}=\frac{(n+1)!}{3^{n+1}}$ and

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!}{3^{n+1}} \times \frac{3^{n}}{n!}=\frac{n+1}{3} \rightarrow \infty>1
$$

(Div.)
(e) If $a_{n}=\frac{n^{n}}{n!}$, then $a_{n+1}=\frac{(n+1)^{n+1}}{(n+1)!}$ and

$$
\begin{align*}
\frac{a_{n+1}}{a_{n}} & =\frac{(n+1)^{n+1}}{(n+1)!} \times \frac{n!}{n^{n}}=\frac{(n+1)^{n}(n+1) n!}{(n+1) n!n^{n}} \\
& =\frac{(n+1)^{n}}{n^{n}}=\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n} \rightarrow e^{1}=2.7>1 \tag{Div.}
\end{align*}
$$

4) The $n^{\text {th }}$ Root Test

Let $\sum a_{n}$ be a series with $a_{n} \geq 0$ for $n>n_{0}$ and suppose that

$$
\sqrt[n]{a_{n}} \rightarrow \rho
$$

Then

* The series converges if $\rho<1$.
* The series diverges if $\rho>1$.
* The test is not conclusive if $\rho=1$.

Example

Test the convergence of the following series using the $n^{\text {th }}$ Root Test.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$,
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}$,
(c) $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}$,
(d) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$,
(e) $\sum_{n=1}^{\infty}\left(\frac{2 n}{n+1}\right)^{n}$

Solution

(a) $\sqrt[n]{\frac{1}{n^{n}}}=\frac{1}{n} \rightarrow 0<1$
(Conv.)
(b) $\sqrt[n]{\frac{2^{n}}{n^{2}}}=\frac{2}{\sqrt[n]{n^{2}}}=\frac{2}{(\sqrt[n]{n})^{2}} \rightarrow \frac{2}{1^{2}}=2>1$
(Div.)
(c) $\sqrt[n]{\left(1-\frac{1}{n}\right)^{n}}=\left(1-\frac{1}{n}\right) \rightarrow 1$
(Test fails)
(d) $\sqrt[n]{\left(\frac{n}{n+1}\right)^{n^{2}}}=\left(\frac{n}{n+1}\right)^{\frac{n^{2}}{n}}=\left(\frac{n}{n+1}\right)^{n}=\left(\frac{1}{1+1 / n}\right)^{n} \rightarrow \frac{1}{e}=\frac{1}{2.7}<1 \quad$ (Conv.)
(e) $\sqrt[n]{\left(\frac{2 n}{n+1}\right)^{n}}=\frac{2 n}{n+1} \rightarrow 2>1$
(Div.)

