Microbiology Lecture 4 2020-2021 3rd year

DR. ALI AL-FENDI PhD Medical Microbiology

Pathogenesis of bacterial disease

> A pathogen: is any a microorganism that capable of causing a disease.

- Fortunately, only a minority of the vast multitude of microorganisms in nature are pathogenic.
- Whereas, some organisms are highly virulent and cause disease in healthy individuals, even with a small inoculum,
- > Others, cause disease only in compromised individuals when their defenses are weak.
- The latter are called opportunistic organisms, as they take the opportunity offered by reduced host defences to cause disease. These opportunists are frequently members of the body's normal flora.

General aspects of infection

- Virulence is a quantitative measure of pathogenicity and is related to an organism's toxigenic potential and invasiveness.
- Virulence can be measured by the no. of microorganisms (M.O.) required to cause disease. LD50 {50% lethal dose} no. of M.O. needed to kill half the hosts. While, ID50 {50% infectious dose} no. of M.O. needed to cause infection in half the hosts.

Communicable diseases

> Infections are called 'communicable diseases' if they are spread from host to host.

- Many, but not all, infections are communicable: Tuberculosis is communicable vs staphylococcal food poisoning is not.
- > If a disease is highly communicable, it is called a 'contagious disease' (e.g. chickenpox).
- Depending on the degree of incidence and prevalence of an infectious disease in a community, it may be called an endemic, an epidemic or a pandemic infection.
 - An endemic infection is constantly present at a low level in a specific population (e.g. endemic malaria in some African countries).
 - An infection is an epidemic if it occurs much more frequently than usual (e.g. an epidemic of influenza in the winter).
 - An infection is a pandemic if it has a worldwide distribution (e.g. human immunodeficiency virus (HIV) infection).

Stages of infectious disease

> An acute infection generally progresses through four stages:

- 1. The incubation period: time between the acquisition of the organism or the toxin and the commencement of symptoms (this may vary from hours to days to weeks).
- 2. The prodromal period: non-specific symptoms such as fever, malaise and loss of appetite appear during this period.
- 3. The acute specific illness: the characteristic signs and symptoms of the disease are evident during this period.
- 4. The recovery period: the illness subsides and the patient returns to health during this final phase.

Stages of infectious disease

- > an inapparent or subclinical infection, without overt symptoms, where the individual remains asymptomatic although infected with the organism.
- chronic stages, when infected, the body may not completely eliminate the pathogen after recovery and some individuals may become chronic carriers of the organism.

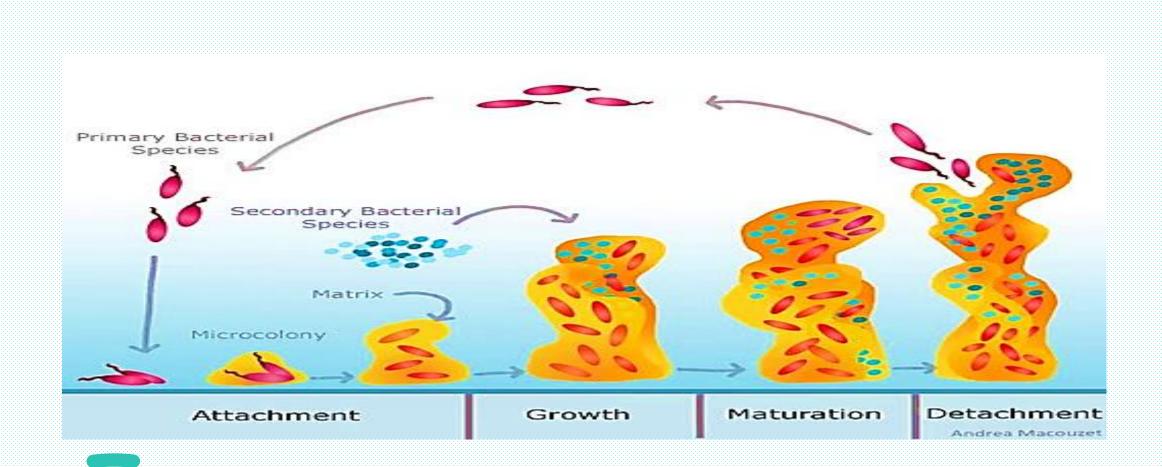
- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- Transmission, Most infections are acquired by transmission from external sources; i.e. they are exogenous in origin. Others are caused by members of the normal flora behaving as opportunist pathogens; i.e. they are endogenous in origin. Transmission can be by:
 - 1. inhalation the airborne route
 - 2. ingestion faecal contamination of food and water
 - 3. inoculation by sexual contact, contaminated needles, skin contact, blood transfusions or biting insects.

- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- 1. Transmission.

There are four important portals (or gates) of entry of pathogens:

- 1. Skin
- 2. Respiratory tract
- 3. Gastrointestinal tract
- 4. Genitourinary tract.

The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.


2. Adherence to host surfaces:

- > Adherence is the first step in infection, Unless organisms have the ability to stick or adhere to host surfaces, they will be unable to cause infection.
- Some bacteria and fungi have specialized structures or produce substances that facilitate their attachment to the surface of human cells.
- These adherence mechanisms are critical for organisms that attach to mucous membranes; mutants that lack these mechanisms are often non-pathogenic.

- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- 2. Adherence to host surfaces:
 - Biofilm formation: Once the organisms adhere to a host surface they usually tend to aggregate and form intelligent communities of cells called biofilms.
 - A biofilm; is defined as an aggregate of interactive bacteria attached to a solid surface (such as a denture prosthesis or an intravenous catheter) or to each other, encased in an extracellular polysaccharide matrix.
 - > Dental plaque on solid enamel surfaces is a classic example of a biofilm.

- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- 3. Invasiveness: Invasiveness of bacteria plays a critical role in pathogenesis; this property is dependent upon secreted bacterial enzymes. A few examples are:
 - Collagenase and hyaluronidase: degrade their respective intercellular substances, allowing easy spread of bacteria through tissues, and are especially important in skin infections caused by Streptococcus pyogenes.
 - Coagulase: produced by Staphylococcus aureus, accelerates the formation of a fibrin clot (from fibrinogen). It helps protect the organisms from phagocytosis by walling off the infected area and by coating the organisms with a fibrin layer.

- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- 3. Invasiveness: Invasiveness of bacteria plays a critical role in pathogenesis; this property is dependent upon secreted bacterial enzymes. A few examples are:
 - Immunoglobulin A (IgA) protease degrades protective IgA on mucosal surfaces, allowing organisms such as N. gonorrhoeae, Haemophilus influenzae and Streptococcus pneumoniae to adhere to mucous membranes.
 - Leukocidins can destroy both neutrophilic leukocytes and macrophages; the periodontopathic organism Aggregatibacter actinomycetemcomitans possesses this enzyme. The mutants that do not secrete the enzyme are less virulent.

- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- Other factors also contribute to invasiveness by interfering with the host defence mechanisms, especially phagocytosis:
 - The polysaccharide capsule of several common pathogens, such as Streptococcus pneumoniae and Neisseria meningitidis, prevents the phagocyte from adhering to the bacteria.
 - The cell wall proteins of the Gram-positive cocci, such as the M protein are also antiphagocytic.

- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- Therefore, Bacterial infection may lead to two categories of inflammation: pyogenic (pus-producing) and granulomatous (granuloma-forming).:
 - Pyogenic inflammation, The neutrophils are the predominant cells in this type of inflammation Streptococcus pyogenes, Staphylococcus aureus and Streptococcus pneumoniae are the common pyogenic bacteria.
 - Granulomatous inflammation, Macrophages and T cells predominate in this type of inflammation. The most notable organism in this category is *Mycobacterium tuberculosis*.

- The major steps are transmission, adherence to host surfaces, invasiveness and toxigenicity.
- Toxigenicity: Toxin production or toxigenicity is another major mediator of bacterial disease. Toxins are of two categories: endotoxins and exotoxins.:
 - Endotoxins: Endotoxins are the cell wall lipopolysaccharides of Gram negative bacteria (both cocci and bacilli) and are not actively released from the cell.
 - Exotoxins: Both Gram-positive and Gram-negative bacteria secrete exotoxins. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism.
 - > Bacterial exotoxins can be broadly categorized as:
 - 1. Neurotoxins (action is mediated via neuronal pathways).
 - 2. Enterotoxins (act on the gut mucosa and cause gastrointestinal disturbances).
 - 3. miscellaneous exotoxins (clostridia)

