Phenols

Lecturer: hiba mushtaq ahmed

1-Nomenclature of Phenols

 Phenols are compounds that have hydroxyl group bonded directly to benzene ring.

Named on basis of phenol as parent, substituents listed in alphabetical order.

1- Naphthol

2- Naphthol

2-Physical Properties

1-The OH group of phenols allows hydrogen bonding to other phenol molecules and to water.

2-Compared to compounds of similar size and molecular weight, hydrogen bonding in phenol raises its melting point, boiling point, and solubility in water.

TABLE 24.1	BLE 24.1 Comparison of Physical Properties of an Arene, a Phenol, and an Aryl Halide					
Compound						
Physical property		Toluene, C-H-CH-	Phenol, C.H.OH	Fluorobenzene, C-H-E		
		C6115C113	Children	C 61151		
Molecular weight		92	94	96		
Melting point		−95°C	43°C	−41°C		
Boiling point (1 atm)		111°C	132°C	85°C		
Solubility in water (25°C)		0.05 g/100 mL	8.2 g/100 mL	0.2 g/100 mL		

Hydrogen Bonding of Phenols

Hydrogen Bonding with Water

3- Acidity of Phenols

- Most characteristic property of phenols is their acidity.
- Phenols(pKa = 10) are more acidic than alcohols(pKa = 16-20) but less acidic than Carboxylic acids (pKa = 5).

To explain why, let's compare the ionization of Ethanol and Phenols

Electron delocalization in phenoxide is represented by resonance among the structures:

The negative charge in phenoxide ion is shared by the oxygen and the carbons that are ortho and para to it. Delocalization of its negative charge strongly stabilizes phenoxide ion.

Substituent Effects on the Acidity of Phenols.

1-Electron-releasing groups (CH3, OCH3) have little or no effect.

2-Electron-withdrawing groups (NO2, Cl, OH) increase acidity.

3- Multiple substituent of electronwithdrawing group greatly increase acidity of phenols.

Electron-releasing groups have little or no effect.

Electron-withdrawing groups increase acidity.

Effect of electron-withdrawing groups is most pronounced at ortho and para positions.

Effect of strong electron-withdrawing groups is cumulative.

	Ionization			
Compound name	constant K _a	р <i>К</i> а		
Monosubstituted phenols				
Phenol	1.0×10^{-10}	10.0		
o-Cresol	4.7×10^{-11}	10.3		
<i>m</i> -Cresol	8.0×10^{-11}	10.1		
<i>p</i> -Cresol	5.2×10^{-11}	10.3		
o-Chlorophenol	$2.7 imes 10^{-9}$	8.6		
<i>m</i> -Chlorophenol	$7.6 imes 10^{-9}$	9.1		
<i>p</i> -Chlorophenol	3.9×10^{-9}	9.4		
o-Methoxyphenol	1.0×10^{-10}	10.0		
<i>m</i> -Methoxyphenol	2.2×10^{-10}	9.6		
<i>p</i> -Methoxyphenol	6.3×10^{-11}	10.2		
o-Nitrophenol	5.9×10^{-8}	7.2		
<i>m</i> -Nitrophenol	4.4×10^{-9}	8.4		
<i>p</i> -Nitrophenol	$6.9 imes 10^{-\circ}$	7.2		
Di- and trinitrophenols				
2,4-Dinitrophenol	1.1×10^{-4}	4.0		
3,5-Dinitrophenol	2.0×10^{-7}	6.7		
2,4,6-Trinitrophenol	4.2×10^{-1}	0.4		

4-Sources of Phenols

- Phenols was first isolated from coal tar.
- Phenol is an important industrial chemical.
- Major use is in phenolic resins for adhesives and plastics.

Industrial preparation of Phenols

Laboratory Synthesis of Phenols

The most important synthesis of phenols in the laboratory is from amines b hydrolysis of their corresponding diazonium salts, as described in Section 22.18:

5- Reactions of Phenols

A hydroxyl group is very powerful activating substituent, and electrophilic aromatic substitution in phenol occurs far faster, and under milder condition, than in benzene. a- Halogenation

b-Sulfonation

c-Nitration

d-Nitrosation

d-Friedal Crafts Alkylation

e-Friedal Crafts Acylation

In the absence of ALCL3, However O-acylation occurs instead.

PROBLEM 24.7 Write chemical equations expressing each of the following:

- (a) Preparation of o-nitrophenyl acetate by sulfuric acid catalysis of the reaction between a phenol and a carboxylic acid anhydride.
- (b) Esterification of 2-naphthol with acetic anhydride in aqueous sodium hydroxide
- (c) Reaction of phenol with benzoyl chloride

SAMPLE SOLUTION (a) The problem specifies that an acid anhydride be used; therefore, use acetic anhydride to prepare the acetate ester of *o*-nitrophenol:

f- Reaction with arenediazonium salts.

6- Aspirin and the Klobe -Schmitt Reaction.

The best known aryl ester is O-acetylsalicylic acid, better known as aspirin. It is prepared by acetylation of the phenolic hydroxyl group of salicylic acid:

Preparation of Salicylic Acid

This reaction is called the Kolbe- Schmitt reaction. Acidification coverts the sodium salt shown above to salicylic acid.