Digital Signal Processing

Lecture (9): Standard Discrete-Time Signals

Dr. Rasha Thabit

drrashathabit@alrasheedcol.edu.iq

Department of Computer Techniques Engineering

Operations of Signals

Sometime a given mathematical function may completely describe a signal .

Different operations are required for different purposes of arbitrary signals.

The operations on signals can be

Time Shifting

Time Scaling

Time Inversion or Time Folding

Time Shifting

The original signal x(t) is shifted by an amount t_o .

 $X(t) \rightarrow X(t-to) \rightarrow Signal Delayed \rightarrow Shift to the right$

Time Shifting Contd.

 $X(t) \rightarrow X(t+to) \rightarrow Signal Advanced \rightarrow Shift to the left$

Time Scaling

For the given function x(t), x(at) is the time scaled version of x(t)

For a > 1, period of function x(t) reduces and function speeds up. Graph of the function shrinks.

For a < 1, the period of the x(t) increases and the function slows down. Graph of the function expands.

Time scaling Contd.

Example: Given x(t) and we are to find y(t) = x(2t).

Time scaling Contd.

Given y(t), find w(t) = y(3t)and v(t) = y(t/3).

Time Reversal

Time reversal is also called time folding

In Time reversal signal is reversed with respect to time i.e. y(t) = x(-t) is obtained for the given function

Operations of Discrete Time Functions

Time shifting

$$n \rightarrow n + n_0$$
, n_0 an integer

