Lecture 4
 Statistics for Analytical Chemistry

Dr. Rusul H. Hamza

The General Analytical Problem

Select sample
Extract analyte(s) from matrix

Separate analytes

Detect, identify and quantify analytes

Determine reliability and
 significance of results

Mean

also known as average: is a central value of a finite set of numbers. the sum of the values divided by the number of
 values.

Where $x_{i}=$ individual values of x
$N=$ number of replicate measurements

Median

the median is the value separating the higher half from the lower half of a data sample, a population. For a data set, it may be thought of as "the middle" value.

Illustration of "Mean" and "Median"

Results of 6 determinations of the Fe (III) content of a solution, known to contain 20 ppm :

Note: The mean value is 19.78 ppm (i.e. 19.8ppm) - the median value is $\mathbf{1 9 . 7} \mathbf{~ p p m}$

Precision

Relates to reproducibility of results..
How similar are values obtained in exactly the same way?

Useful for measuring this:
Deviation from the mean:

$$
d_{i}=\left|x_{i}-\bar{x}\right|
$$

$$
\begin{aligned}
& x_{i}=\text { individual values } \\
& \mathrm{X}=\text { mean }
\end{aligned}
$$

Accuracy

Measurement of agreement between experimental mean and true value (which may not be known!).
Measures of accuracy:
Absolute error: $E=x_{i}-x_{t}$
($x_{t}=$ true value, $x_{i}=$ individual values)
Relative error: $\quad E_{r}=\frac{x_{i}-x_{t}}{x_{t}} \times 100 \%$
(latter is more useful in practice)

Illustrating the difference between "accuracy" and "precision"

Low accuracy, low precision

High accuracy, low precision

Low accuracy, high precision

High accuracy, high precision

Types of Error in Experimental Data

Three types:
(1) Random (indeterminate) Error

Data scattered approx. symmetrically about a mean value. Affects precision.
(2) Systematic (determinate) Error

Several possible sources. Readings all too high or too low. Affects accuracy.
(3) Gross Errors

Usually obvious - give "outlier" readings.

Sample Standard Deviation, s

the standard deviation is a measure of the amount of variation or dispersion of a set of values.

$$
s=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1}}
$$

Standard Error of a Mean

The standard deviation relates to the probable error in a single measurement.

The standard error of the mean ($\mathbf{S m}$), is defined as follows:

$$
s_{m}=s / \sqrt{N}
$$

$$
N=\text { measurements }
$$

Standard Curve

Not necessarily linear.

 Linear is mathematically easier to deal with.$\overleftarrow{7}$
흉
$\underset{\sim}{\otimes}$

$$
\begin{aligned}
& 15 \\
& 10 \\
& 5 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { [Ca] (mg/L) }
\end{aligned}
$$

Textbooks

"Statistics for Analytical Chemistry" J.C. Miller and J.N. Miller, Second Edition, 1992, Ellis Horwood Limited
"Fundamentals of Analytical Chemistry"
Skoog, West and Holler, 7th Ed., 1996

Thank you

