<u>Lecture 4</u> <u>Statistics for Analytical Chemistry</u>

Dr. Rusul H. Hamza

also known as average: is a central value of a finite set of numbers.

the sum of the values divided by the number of values.

Where x_i = individual values of xN = number of replicate measurements

the **median** is the value separating the higher half from the lower half of a data sample, a population. For a data set, it may be thought of as "**the middle**" value. Results of 6 determinations of the Fe(III) content of a solution, known to contain 20 ppm:

Illustration of "Mean" and "Median"

Note: The mean value is 19.78 ppm (i.e. **19.8ppm**) - the median value is **19.7 ppm**

Relates to *reproducibility* of results.. How similar are values obtained in exactly the same way?

Useful for measuring this: **Deviation from the mean**:

$$d_i = \left| x_i - \overline{x} \right|$$

 $x_i =$ individual values X= mean

Measurement of agreement between experimental mean and true value (which may not be known!). Measures of accuracy:

Absolute error: $E = x_i - x_t$ (x_t = true value, x_i =individual values)

Relative error:
$$E_r = \frac{x_i - x_t}{x_t} \times 100\%$$

(latter is more useful in practice)

Illustrating the difference between "accuracy" and "precision"

Low accuracy, low precision

Low accuracy, high precision

High accuracy, low precision

High accuracy, high precision

Types of Error in Experimental Data

Three types:

(1) Random (indeterminate) Error

Data scattered approx. symmetrically about a mean value. Affects **precision.**

(2) Systematic (determinate) Error Several possible sources. Readings all too high or too low. Affects accuracy.

(3) Gross Errors

Usually obvious - give "outlier" readings.

Sample Standard Deviation, s

the standard deviation is a measure of the amount of variation or <u>dispersion</u> of a set of values.

$$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$$

Standard Error of a Mean

The standard deviation relates to the probable error in a single measurement.

The standard error of the mean (Sm), is defined as follows:

$$s_m = \sqrt[s]{\sqrt{N}}$$

N= measurements

Standard Curve

Not necessarily linear. Linear is mathematically easier to deal with.

Textbooks

"Statistics for Analytical Chemistry" J.C. Miller and J.N. Miller, Second Edition, 1992, Ellis Horwood Limited

"Fundamentals of Analytical Chemistry" Skoog, West and Holler, 7th Ed., 1996

Thank you

