

Al-Rasheed University College Pharmacy Department

2nd Stage / 1st Semester

2021-2022

Blood's physiology

Physiology lab #1

Done by:

Assis. Lecturer Mohammed Akram Al-Mahdawi

Introduction:

- **Blood** is the primary transport medium which is responsible for supplying nutrients, oxygen to the various body cells.
- **Blood** is classified as a **connective tissue**. Classification is based on;

Presence of cells (RBC and WBC), Cell fragment (Platelets) surrounded by liquid matrix (Plasma).

- RBC, WBC and Platelets are described as Formed elements.
- The total blood volume in the average adult is approximately is 4-5L in females, and 5-6L in males.

General properties of **Blood**

8%
80-85 ml/kg
36.5 – 37.5 C
7.35-7.45
Whole blood 4.5-5.5
Plasma 2.0
280-296 mOsm/L
0.9%
Female 37%-48%, Male 45%-52%
Male 13-18 g/dl Female 12-16g/dl,
Female 4.8 million/mm ³ , male 5.4 million/ mm ³
130000 - 360000/mm ³
4000 - 11000/mm ³

- RBCs has the highest number of cells within the blood. Which, we can determine the oxygen carrying capacity of the blood.
- If the number of RBC is low >>> Individual is suffering from anemia >>> low oxygen carrying capacity. And VISE VERSA.
- There are three common measurements used to assess blood's oxygen carrying capacity:

Hematocrit value (HCT, PCV Value)

Hemoglobin concentration (Hb)

Total RBCs count

QUESTION TIME?

The values of (RBCs count, PCV value, and Hb conc.) tend to be lower in women than in men, and the possible physiological reasons?

1-Androgens stimulates RBC production >>> Men have higher levels of androgens than females >>> Thus Men have higher levels of RBC than women.

2-Women in reproductive age have periodic menstrual losses.

3-Hematocrit is inversely proportional to the percentage of body fat. Fat percentage is higher in women than in men

Blood's general functions

Bloods components

TS LEUKOCYTES

Albumins 54%

Globulins 38%

Fibrinogen 7%

All others 1%

Electrolytes

Gases

Regulatory substances

Vitamins

Waste Products

SOLUTES

Neutrophils

60-70%

000000

00000

Lymphocytes

20-25%

Monocytes

Eosinophils

Basophils 0.5-1.0%

2-4%

3-8%

00000

Types of plasma proteins

- Proteins are the most abundant plasma solute.
- Their concentration ranges from (6-9 gm/dl).
- Plasma displays different function including:
- Clotting
- Defence
- Transport
- Plasma's proteins are classified into three main categories:
- 1-Albumin (60%)
- 2-Globulin (36%)
- Alpha Globulin
- Beta Globulin
- Gamma Globulin
- 3-Fibrinogen (4%)

Major Types:

- Albumin (60%)
- Major component of osmotic pressure of plasma
- Globulins (35%)
 - Antibodies (immunoglobulin) and transport proteins
- Fibrinogens (4%)
 - Functions in blood clotting
- Other (<1%)</p>

Various roles (α-1-antitrypsin, coagulation factors, etc.)

• Albumin:

- The most abundant plasma protein, which constitutes about (60%)
- Contributes in the viscosity of blood.
- Regulate osmotic pressure and osmolarity.
- Transport lipids, hormones, calcium and other solutes.
- Act as buffer to regulate plasma PH.

• Globulins:

- Alpha-globulin function:
- Transportation (haptoglobin and ceruloplasmin)
- Promote clotting (prothrombin)
- Regulate salt content and blood pressure (angiotensin I & II).
- Beta—globulin function:
- Transport iron (transferrin)
- Defense against toxins and micro-organisms
- Gamma-globulin function: They are classified as antibodies that provide defense against pathogens and viruses.

• Fibrinogen:

- A key factor in **blood clotting**, converted to **fibrin** (the main component of **blood clot**)
- Removing fibrinogen from plasma, the remaining fluid is called serum.

• Important note:

All types of plasma proteins are produced in the liver. However!

Gamma-globulin is produced in the lymphatic tissue, cytoplasm of immature and mature plasma cells and in spleen.

Types of plasma soluble solutes

• • Non-protein nitrogenous substances:

- They are usually waste end products of catabolism of different substances and toxic
- • These waste products are cleared through excretion by the kidneys
 - The most abundant is urea, which is the end product of amino acid catabolism
 - Other waste products are ammonia, creatin, creatinine, uric acid, and bilirubin
- • Nutrients:
- • Absorbed by the digestive tract and transported to plasma
- •They include; glucose, amino acids, fats, cholesterol, phospholipids, vitamins and minerals
- • Gases:
 - Oxygen (O2) and Carbon dioxide (CO2)
 - Small amount of nitrogen important for diving and aviation

• • Regulatory Substances:

Include: enzymes and hormones.

• • Electrolytes:

 Include: sodium, potassium, magnesium, calcium, chloride, bicarbonate, phosphate and sulfate.

- Sodium accounts for about 90% of all electrolytes
- Sodium plays a major role in regulating osmolarity and blood pressure

