

Al-Rasheed University College Pharmacy Department 2nd Stage / 1st Semester 2021-2022

Determination of Hemoglobin

Physiology lab #5

Done by:

Assis. Lecturer Mohammed Akram Al-Mahdawi

Introduction

 Hemoglobin (Hb) is an <u>iron-containing protein</u> → Main constituent of RBCs

- Hb consist of two parts:
- Heme pigment: Displays iron in Fe+2 form, constitute 4% (4 molecules)
- Globin protein: Constitute up to 96% (4 molecules)

Hemoglobin's functions

- Hb binds to the <u>oxygen</u> in the lungs >> Transport oxygen >> Release oxygen to tissues to permit <u>aerobic respiration</u>.
- Transport H+, <u>Carbon dioxide</u> from <u>tissues</u> to <u>lungs</u>
- Hb provides blood's distinctive "Red color".
- Regulate blood's PH by working as a buffer.
- Contribute in formation of bile pigment.

Hemoglobin's forms

• Oxyhaemoglobin: Hb combined with O2. Each of the 4 iron atoms in Hb molecule can bind reversibly to one O2 molecule!

Iron stays in ferrous state (Fe+2) -> Reaction is oxygenation not oxidation

- Carbaminohaemoglobin: Hb combined with CO2.
- Carboxyhaemoglobin: is a complex Hb found mainly in smoker's blood It can be produced and released in the following conditions:
- 1-Hb binds to CO.
- 2-During degradation of Hb

Hemoglobin's forms

- Methaemoglobin (MHb): A type of Hb in which the iron in heme group is ferric (fe+3) state.
- *Unable to carry O2*
- *MetHb enzyme converts MHb → Hb*
- *Lacking of MetHb → increase in Mhb levels → Methemoglobinemia*

• Sulfhaemoglobin: Hb containing sulfar and is unable to transport O2. It is usually formed by certain oxidizing drugs.

Hemoglobin's classifications

- Adult hemoglobin (HbA): Consists of 2 types of polypeptide chains (Alpha, Beta). $(a,\beta) \rightarrow \alpha 2\beta 2$
- Adult hemoglobin (HbA2): Consists of 2 types of polypeptide chains (Alpha, Delta). $(a,\delta) \rightarrow \alpha 2\delta 2$
- Fetal hemoglobin (Hbf): Consists of 2 types of polypeptide chain (Alpha, Gamma). (a, γ) $\rightarrow \alpha 2\gamma 2$.

This type of Hb is replaced after birth by adult Hb

• Glycosylated hemoglobin (HbA1C): Consists of 2 types of polypeptide chains (a,β) with glucose molecule attached to the terminal amino acid of each chain.

Clinically important in diabetes mellitus.

Hemoglobin's abnormalities

Hemoglobinopathies:

Group of inherited blood disorders that affects RBC → Abnormalities in structure of globin protein → Premature destruction of RBCs and anemia.

Sickle cell anemia: an inherited disease causes a mutation in B chain → Sickle shaped RBC.

Thalassemia: Results from decreased production of globin proteins, it have two types:

Alpha – thalassemia Beta – thalassemia Both types results from either reduction or absence of <u>alpha</u> or <u>beta</u> <u>polypeptides</u>

Thalassemia

Normal

Thalassemia

Sickle-Cell Anemia

Determination of Hb's concentration

Cyanmethemoglobin Method (Accurate):

Principle: based on reacting the hemoglobin in blood sample with a reagent solution containing (potassium ferricyanide) to form cyanmethemoglobin (Colored compound).

The sample should then be assessed by using spectrophotometer (an instrument that measures the absorbance of light by a colored sample at certain wavelength)

Determination of Hb's concentration

- Hemoglobin Color Scale (Qualitative):
- Principle: this method is based on having a drop of blood on a strip paper, then compare the color of the blood drop to a standard colored chart

Clean Finger with Alcohol Swab

After (3-4) Drop take a new drop of blood

Haemoglobin Strip

Determination of Hb's conc

- Sahli Method (Estimate):
- Principle:

Blood <u>hemoglobin</u> is converted to <u>hematic</u> acid (<u>brown color</u>) by HCl.

• Interpretation:

Intensity of color is measured by comparing the sample to a standard colored bars.

Aim of this Method:

Measure the concentration of hemoglobin in blood sample. Find the percentage of error in this method.

Normal Values:

Male 13.6 – 17.2 gm/dl of blood .. **Female** 11.5 – 15 gm/dl of blood

Sahli Hemoglobinometer

Procedure requirements

- 70% alcohol & cotton
- Sterile blood lancet
- 0.1 N hydrochloric acid
- Distilled water
- Sahli hemoglobinometer

Procedure

- Fill the graduated tube to mark (2) with 0.1 normal HCL.
- Draw blood by hemoglobin pipette to mark 20μl (Micro-litters).
- Dip the tip of the pipette in the graduated tube to blow the blood into the tube and mix content with a stirrer.
- Place the tube in the hemoglobinometer for 10 min to ensure complete reaction.
- Add drop by drop D.W until the color in graduated tube is identical to the color of the standard.
- Read and assess the results in g/dl.

Calculation the percentage of error:

Example: calculate the percentage of error in Sahli hemoglobin method, if the results obtained are 80% and 10.2 gm/dl for a female patient?

- Calculate the percentage from the <u>red reading (% of Hb):</u>
- % of Hb (estimated) = 80%
- Normal Hb conc. for female is (11.5 15 gm/dl) <<< take the average (13.5 gm/dl)

```
    Calculate the percentage from the <u>yellow</u>
reading (gm/dl):
```

- Gm/dl of Hb (estimated) = 10.2
- Normal Hb. Conc. For female is (11.5 15 gm/dl)
 take the average (13.5 gm/dl)

```
      13.5gm/dl
      100%

      X
      80%

      X = 10.8 gm/dl (calculated Hb)
      X = 75.6 %
```

