Cyclosporine

Dr. Muhannad R. M. Salih B.Sc, M.Pharm (Clinical Pharmacy), Ph.D, RPH Pharmacy Department, Al-Rasheed University College muhanad_rmk@yahoo.com

Therapeutic and toxic concentrations

- The therapeutic range of cyclosporine used by clinicians varies greatly according to
 - 1. the type of assay used to measure cyclosporine.
 - 2. whether blood or serum concentrations are determined by the clinical laboratory.

Therapeutic and toxic concentrations

- High pressure liquid chromatography (HPLC) (Blood) 100-400 (ng/mL)
- High pressure liquid chromatography (HPLC) (Plasma) 50-150 (ng /mL)
- Polyclonal fluorescence polarization immunoassay (Blood) 200-800 (ng/mL)
- Polyclonal fluorescence polarization immunoassay (Plasma) 100-400 (ng/mL)
- Because cyclosporine is bound to red blood cells, blood concentrations are higher than simultaneously measured serum or plasma concentrations.

- Cyclosporine is almost completely eliminated by hepatic metabolism (>99%).
- Cyclosporine is a low-to-moderate hepatic extraction ratio drug with an average liver extraction ratio of ~30%.
- Because of this, its hepatic clearance is influenced by
 - unbound fraction in the blood (f_B)
 - intrinsic clearance (Cl'_{int})
 - liver blood flow (LBF)

 $Cl_{H} = \frac{LBF \cdot (f_{B} \cdot Cl'_{int})}{LBF + (f_{B} \cdot Cl'_{int})}$

- There is a large amount of intrasubject variability in cyclosporine concentrations obtained on a day-to-day basis, even when the patient on steady state. There are many reasons for this variability.
 - Cyclosporine has low water solubility.
 - Cyclosporine gastrointestinal absorption can be influenced by many variables.

- To improve the consistency of absorption rate and bioavailability for original dosage form (Sandimmune, Novartis), a micro emulsion version of the drug (Neoral, Novartis) was marketed to help reduce absorption variability.
- While use of micro-emulsion cyclosporine does decrease steady-state concentration variability

(10–30% for Neoral versus 16–38% for Sandimmune trough concentrations).

- Cyclosporine capsules and solution are available in regular (25-mg, 50-mg, and 100-mg capsules; 100-mg/mL solution) and micro emulsion (25-mg and 100-mg capsules; 100-mg/mL solution) form.
- Cyclosporine injection for intravenous administration is available at a concentration of 50 mg/mL.
- Before administration, each milliliter of the concentrate should be diluted in 20-100 mL of normal saline or 5% dextrose, and the total dose infused over 2–6 hours.

Pharmacokinetically; what are the differences between the cyclosporine formulation (Sandimmune[®]) and the cyclosporine-modified formulations (Neoral[®]and Gengarf[®])?

Answer

- The cyclosporine-modified formulations absorbed faster (i.e.; shorter T_{max}), to a greater extent (i.e.; higher AUC and C_{max}) and more consistently (i.e.; decreased intrapatient and interpatient variability).
- Therefore; they are not considered bioequivalent formulations and therefore should not be used interchangeably.

Why original cyclosporine formulation (Sandimmune[®]) is no longer commonly used?

Answer

- Because of its pharmacokinetic limitations and hence patients may receiving this brand if they are on a stable regimen and wish to continue with this particular formulation.
- Therefore; most patients who are initiated on a cyclosporine-based immunosuppression regimen are started with a cyclosporine-modified formulation.

What are the factors that are important in the determination of cyclosporine blood trough concentrations?

Answer

- organ(s) transplanted.
- time after transplant.
- transplant center-specific immunosuppression protocols.

Clearance and Half-Life

For adults

Cl = 6 mL/min/kg

Half-life = 10 hours

Patients with **liver failure** Cl = 3 mL/min/kg Half-life = 20 hours

For children

(≤16 years old) Cl = 10 mL/min/kg Half-life = 6 hours

Pharmacokinetics

- Vd = 5 L/kg
- Obesity <u>does not</u> influence cyclosporine pharmacokinetics, so doses should be based on ideal body weight for these individuals.
- Renal failure <u>does not</u> change cyclosporine pharmacokinetics, and the drug is not significantly removed by hemodialysis or peritoneal dialysis.

Initial Dosage Determination Methods

1. Pharmacokinetic Dosing Method

2. Literature-Based Recommended Dosing

Pharmacokinetic Dosing Method

1. Clearance estimate

Clearance for adult..... 6 mL/min/kg. Children (≤16 years old). (10 mL/min/kg) Patients with liver failure (3 mL/min/kg)

Clearance should be converted to L/hr.
Clearance × weight (Kg) × 60 /1000

3. (Css in ng/mL converted to mg/L) by dividing the Css on 1000

Pharmacokinetic Dosing Method

4. Selection of pharmacokinetic equations

 τ = 12 hr. for adult and I.V injection

F= 0.3

 $Css = [F (D/\tau)] / CL$ $D = (Css \cdot CL \cdot \tau) / F$

K₀= Css. CLfor I.V infusion

HO is a 50-year-old, 75-kg (5 ft 10 in) male renal transplant patient 2 days post transplant surgery. The patient's liver function tests are normal. Suggest an initial oral cyclosporine dose designed to achieve a steady-state cyclosporine trough blood concentration equal to 250 ng/mL.

Answer:

1. Estimate clearance

The mean cyclosporine clearance for adult patients is 6 mL/min/kg.

- $CI = 6 \text{ mL/min/kg} \cdot 75 \text{ kg} \cdot (60 \text{ min/h} / 1000 \text{ mL/L})$
 - = 27 L/h

2. <u>Compute dosage regimen.</u>

A 12-hour dosage interval will be used for this patient.

The dosage equation for oral cyclosporine is

 $\mathsf{D} = (\mathsf{Css} \cdot \mathsf{CI} \cdot \tau) / \mathsf{F}$

- = (250 μ g/L \cdot 27 L/h \cdot 12 h) / (0.3 \cdot 1000 μ g/mg)
- = 270 mg, rounded to 300 mg every 12 hours.

Literature-Based Recommended Dosing

- Initial oral doses of 8–18 mg/kg/d
- Intravenous doses of 3–6 mg/kg/d
- For obese individuals (>30% over ideal body weight) ideal body weight should be used to compute initial doses.

Literature-Based Recommended Dosing

 Cyclosporine therapy is commonly started 4–12 hours before the transplantation procedure. According to a survey of transplant centers in the United States, the average initial oral dose (± standard deviation) for

renal transplant patients 9 ± 3mg/kg/d liver transplant patients 8 ± 4mg/kg/d

Heart transplant patients 7 ± 3 mg/kg/d

For both rheumatoid arthritis and psoriasis, the recommended initial dose is 2.5 mg/kg/d administered twice daily as divided doses with maximal recommended doses of 4 mg/kg/d.

Use of cyclosporine concentrations to alter doses

1. Linear Pharmacokinetics Method

2. Pharmacokinetic Parameter Method

Linear Pharmacokinetics Method

 $D_{new}/Css_{new} = D_{old}/Css_{old}$

 $D_{new} = (Css_{new}/Css_{old})D_{old}$

• The steady state concentration used here either average C_{ss} or recent studies have found that the steady-state cyclosporine concentration 2 hours after a dose (C_2) reflects cyclosporine area under the curve better than an average concentration

Pharmacokinetic Parameter Method

 It allows the computation of an individual's own, unique pharmacokinetic constants (actual CL) and uses those to calculate a dose that achieves desired cyclosporine concentrations.

(actual CL) $CI = [F(D/\tau)] / Css$

The resulted Cl will be in L/hr.

 Then compute cyclosporine dose by using actual Cl Cyclosporine clearance and desired Css

• The new dose:

• D = (Css · Cl ·
$$\tau$$
) / F

