Chronic Kidney Disease

Dr. Muhannad R. M. Salih B.Sc, M.Pharm (Clinical Pharmacy), Ph.D, RPH Pharmacy Department, Al-Rasheed University College muhanad_rmk@yahoo.com

Background

- Chronic kidney disease (CKD) is defined as abnormalities in kidney structure or function, present for <u>3 months or longer</u>, with implications for health.
- Abnormalities include
 - albuminuria >30 mg/day
 - presence of hematuria or red cell casts in urine sediment
 - electrolyte abnormalities

CKD Classification

	Stage of CKD Glomerular filtration rate		Description		
	1	≥90 mL/min	Normal or high		
	2	60–89 mL/min	Mildly decreased		
	3a	45–59 mL/min	Mildly to moderately decreased		
/					
	3b	30–44 mL/min	Moderately to severely decreased		
	4	15–29 mL/min	Severely decreased		
			Kidney failure or End Stage Renal		
	5	<15 mL/min	Disease (ESRD) if requiring dialysis		

Background

- Prognosis depends on
 - cause of kidney disease
 - GFR at time of diagnosis
 - degree of albuminuria
 - presence of other comorbid conditions

Pathophysiology

- Susceptibility factors increase the risk for kidney disease but do not directly cause kidney damage. They include
 - advanced age
 - reduced kidney mass
 - Iow birth weight
 - racial or ethnic minority
 - family history
 - Iow income or education
 - systemic inflammation
 - dyslipidemia

Pathophysiology

- Initiation factors directly result in kidney damage and are modifiable by drug therapy, they include
 - diabetes mellitus
 - hypertension
 - glomerulonephritis
 - polycystic kidney disease
 - Wegener granulomatosis (inflammation of blood vessels)
 - vascular diseases
 - human immunodeficiency virus (HIV) nephropathy.

Pathophysiology

- Progression factors accelerate the decline in kidney function after initiation of kidney damage, they include
 - glycaemia in diabetics
 - hypertension
 - proteinuria
 - hyperlipidemia
 - obesity
 - smoking

Clinical presentation

- CKD development and progression are insidious. It proceed in a gradual, subtle way, but with harmful effects.
- Patients with stage 1 or 2 CKD usually do not have symptoms.
- Metabolic imbalances seen with stages 3 to 5, such as
 - anemia
 - secondary hyperparathyroidism
 - cardiovascular disease
 - malnutrition
 - fluid and electrolyte abnormalities

Clinical presentation

- Uremic symptoms (fatigue, weakness, shortness of breath, mental confusion, nausea, vomiting, bleeding, and anorexia) are
 - generally absent in stages 1 and 2 CKD
 - minimal during stages 3 and 4 CKD
 - common in stage 5 CKD who may also experience itching, cold intolerance, weight gain, and peripheral neuropathies.

Clinical presentation

 Signs and symptoms of uremia are foundational to the decision to implement renal replacement therapy.

Treatment

 <u>Goal of Treatment</u>: The goal is to delay the progression of CKD, minimizing the development or severity of complications.

Nonpharmacologic therapy

- Restrict protein to 0.8 g/kg/day if GFR is <30 mL/min.</p>
- Encourage smoking cessation to slow progression of CKD and reduce the risk of cardiovascular disease.
- Encourage exercise at least 30 minutes five times per week and achievement of a body mass index (BMI) of 20 to 25 kg/m².

Hypertension with CKD

- Progression of CKD can be limited by optimal control of
 - Hypertension
- Adequate blood pressure control can reduce the decline rate in GFR and albuminuria in patients without diabetes.

Based on the KDIGO guidelines

Urine albumin excretion	Target blood pressure
<30 mg/24 h	≤140/90 mm Hg
>30 mg/24 h	≤130/80 mm Hg

- Initiate first-line therapy with an ACEI or an angiotensin II receptor blocker (ARB).
- Add a thiazide diuretic in combination with an ACEI or ARB if additional reduction in proteinuria is needed.
- Nondihydropyridine calcium channel blockers (Verapamil, and Diltiazem) are generally used as second-line antiproteinuric drugs when ACEIs or ARBs are contraindicated or not tolerated.

- ACEI clearance is reduced in CKD; therefore, treatment should begin with the lowest possible dose followed by gradual titration
 - to achieve target BP
 - to minimize proteinuria

No individual ACEI is superior to another.

Diabetes with CKD

- Progression of CKD can be limited by optimal control o
 - hyperglycemia
- Target HgbA1C is ~7% but consider >7% if there is a risk of hypoglycemia or a limited life expectancy.

Anemia of CKD

- KDIGO definition of anemia:
 - Hemoglobin (Hb) <13 g/dL for adult males</p>
 - Hemoglobin (Hb) <12 g/dL for adult females</p>
- Initiate erythropoietic-stimulating agent therapy in all CKD patients with Hb is between 9 to 10 g/dL.

Iron deficiency is the primary cause of resistance to treatment of anemia with erythropoietic-stimulating agent.

Iron supplementation is required by most CKD patients to replete iron stores depleted by ongoing blood loss and increased iron demands.

- Parenteral iron therapy improves response to erythropoieticstimulating agent therapy and reduces the dose required to achieve and maintain target indices.
- In contrast, oral therapy is limited by
 - poor absorption
 - non-adherence with therapy primarily due to adverse effects

- Adverse effects of IV iron include allergic reactions, hypotension, dizziness, dyspnea, headaches, lower back pain, arthralgia, syncope, and arthritis.
- Some of these reactions can be minimized by decreasing the dose or rate of infusion.
- Sodium ferric gluconate, iron sucrose, and ferumoxytol have a better safety record than iron dextran products.

- Epoetin alfa and Darbepoetin alfa are erythropoietic stimulating agents
- Darbepoetin alfa has a longer half-life than epoetin alfa and prolonged biologic activity.
- Darbepoetin alfa doses are administered less frequently, starting at once a week when administered IV or SC.
- Hypertension is the most common adverse event.

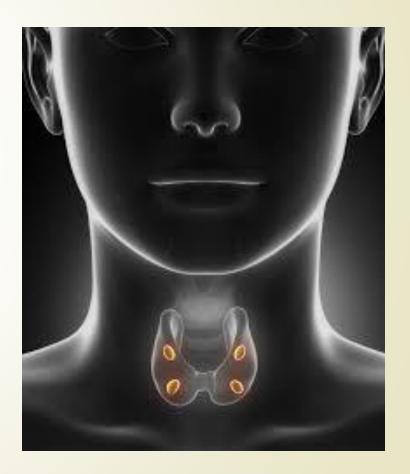
Evaluation of Anemia Therapeutic Outcomes

Iron indices (transferrin saturation and ferritin) should be evaluated before initiating an erythropoieticstimulating agent.

Transferrin saturation and **ferritin test** gives an idea about iron body store. If the values are lower than normal, it indicates that iron stores are low and there is an iron deficiency.

Evaluation of Anemia Therapeutic Outcomes

- Iron status should be reassessed
 - every month during initial erythropoietic-stimulating agent treatment
 - every 3 months for those on a stable erythropoietic-stimulating agent regimen

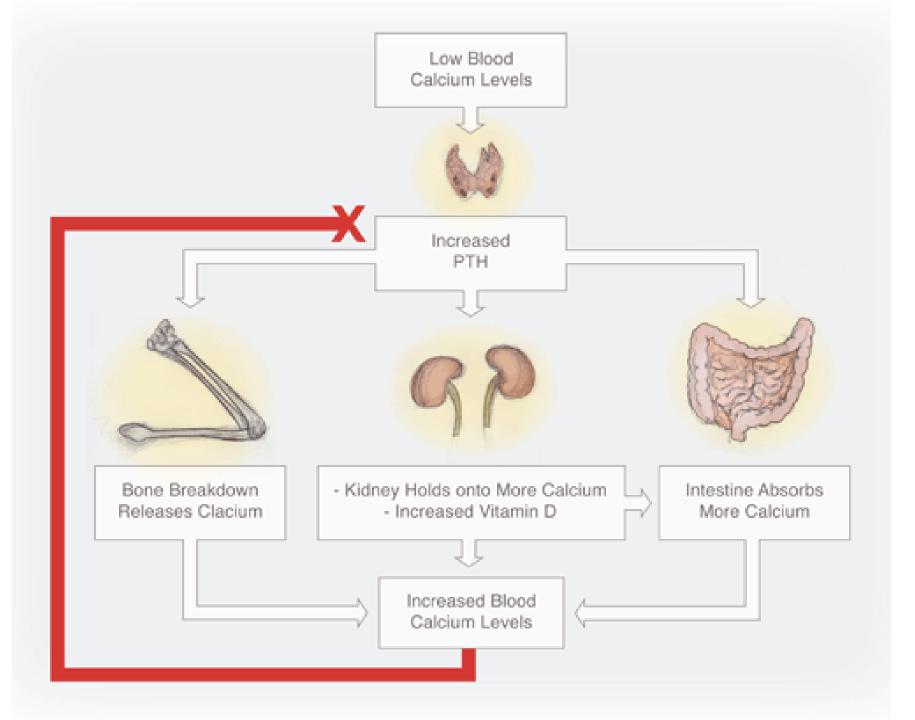


Evaluation of Anemia Therapeutic Outcomes

- Hemoglobin should be monitored at least monthly, although more frequent monitoring (eg, every 1–2 weeks) is warranted after initiation of an erythropoietic-stimulating agent or after a dose change until hemoglobin is stable.
- Patients should be monitored for potential complications, such as hypertension, which should be treated before starting an erythropoietic-stimulating agent.

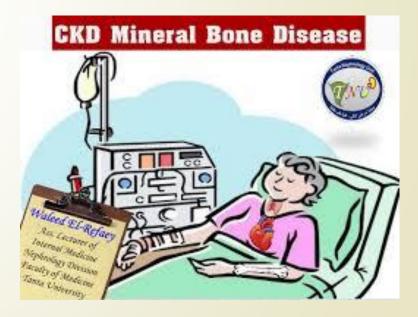
Parathyroid Glands

- The parathyroid glands are four tiny glands, located in the neck, that control the body's calcium levels.
- Each gland is about the size of a grain of rice.



Parathyroid Glands: Function

The parathyroids produce a hormone called parathyroid hormone (PTH). PTH raises the blood calcium level by:

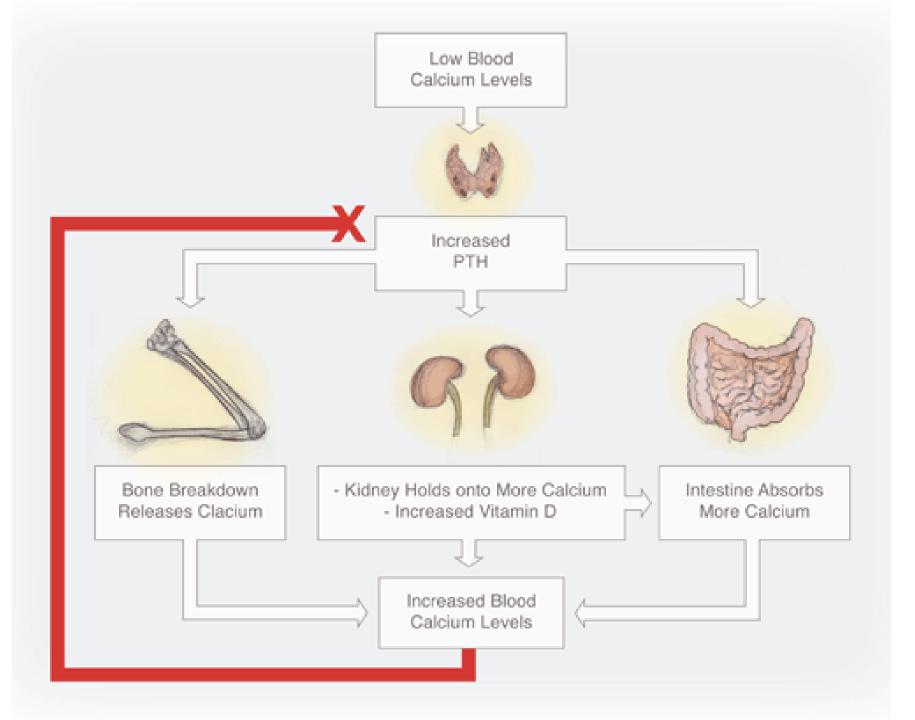

breaking down the bone

- increasing the body's ability to absorb calcium from food
- increasing the kidney's ability to hold on to calcium that would otherwise be lost in the urine

CKD-Related Mineral and Bone Disorder

- Disorders of Mineral and Bone Metabolism (CKD-MBD) are common in the CKD population.
- CKD-MBD includes abnormalities in
 - parathyroid hormone (PTH)
 - calcium
 - phosphorus
 - vitamin D
 - bone turnover
 - soft tissue calcifications

CKD-Related Mineral and Bone Disorder


Calcium-phosphorus imbalance effects on the

bone

- gastrointestinal tract
- kidneys
- parathyroid gland

CKD-Related Mineral and Bone Disorder

- As kidney disease progresses, renal activation of vitamin D is impaired, which reduces gut absorption of calcium.
- Low blood calcium concentration stimulates secretion of PTH.
- As renal function declines, serum calcium balance can be maintained only at the expense of increased bone resorption, ultimately resulting in renal osteodystrophy.
- Secondary hyperparathyroidism is associated with increased morbidity and mortality and sudden death in hemodialysis patients.

Nonpharmacologic approaches to management of hyperphosphatemia and CKD-MBD include

- dietary phosphorus (meats, poultry, fish, nuts, beans and dairy products) restriction
- dialysis
- parathyroidectomy

Phosphate-binding agents decrease phosphorus absorption from the gut and are first-line agents for controlling both

serum phosphorus concentration

serum calcium concentration

TABLE 74–3	TABLE 74–3 Phosphate-Binding Agents for Treatment of Hyperphosphatemia in CKD Patients							
Drug	Brand Name	Compound Content	Starting Doses	Dose Titration ^a	Comments			
Calcium carbonate ^b	Tums, Os-Cal, Caltrate	40% elemental calcium	0.5–1 g (elemental calcium) three times a day with meals	Increase or decrease by 500 mg per meal (200 mg elemental calcium)	First-line agent; dissolution characteristics and phosphate binding may vary from product to product			
					Approximately 39 mg phosphorus bound per 1 g calcium carbonate			
Calcium acetate	PhosLo	25% elemental calcium (169 mg elemental calcium per 667 mg capsule)	0.5–1 g (elemental calcium) three times a day with meals	Increase or decrease by 667 mg per meal (169 mg elemental calcium)	First-line agent; comparable efficacy to calcium carbonate with lower dose of elemental calcium			
(25% elemental calcium)					Approximately 45 mg phosphorus bound per 1 g calcium acetate			
	Phoslyra	667 mg calcium acetate per 5 mL						
Sevelamer carbonate	Renvela	800 mg tablet	800–1,600 mg three times a day with meals (once-daily dosing also effective)	Increase or decrease by 800 mg per meal	First-line agent; also lowers low-density lipoprotein cholesterol			
		0.8 and 2.4 g powder for oral suspension			Consider in patients at risk for extraskeletal calcification			
					Associated with a lower risk of acidosis and GI adverse events than Renagel (sevelamer hydrochloride) that is no longer available			
Lanthanum carbonate	Fosrenol	500, 750, and 1,000 mg chewable tablets	1,500 mg daily in divided doses with meals	Increase or decrease by 750 mg/day	First-line agent; potential for accumulation of lanthanum due to GI absorption (long-term consequences unknown)			
Aluminum hydroxide ^b	AlternaGel	Content varies (range 100–600 mg/unit)	300–600 mg three times a day with meals	Not for long-term use requiring titration	Not a first-line agent; risk of aluminum toxicity; do not use concurrently with citrate-containing products			
					Reserve for short-term use (4 weeks) in patients with hyperphosphatemia not responding to other binders			

^aBased on phosphorus levels, titrate every 2–3 weeks until phosphorus goal reached. ^bMultiple preparations available that are not listed.

KDIGO guidelines recommend that elemental calcium from

calcium-containing binders should not exceed 1500 mg/day
the total daily intake from all sources should not exceed 2000 mg

This may necessitate a combination of calcium- and non-calciumcontaining products (e.g, sevelamer HCL and lanthanum carbonate).

- Adverse effects of all phosphate binders are generally limited to GI effects, including constipation, diarrhea, nausea, vomiting, and abdominal pain.
- Risk of hypercalcemia may necessitate restriction of calciumcontaining binder use and/or reduction in dietary intake.

- Aluminum and magnesium binders are not recommended for regular use in CKD
- Aluminum binders have been associated with
 - CNS toxicity
 - worsening of anemia
- Whereas magnesium binders may lead to
 - Hypermagnesemia
 - hyperkalemia

Vitamin D therapy

- Reasonable control of calcium and phosphorus must be achieved before initiation and during continued vitamin D therapy.
- Calcitriol, 1,25-dihydroxyvitamin D3, directly suppresses PTH synthesis and secretion and up regulates vitamin D receptors.
- The dose depends on the stage of CKD

Vitamin D therapy

- The newer vitamin D analogues paricalcitol and doxercalciferol may be associated with less hypercalcemia and, for paricalcitol, less hyperphosphatemia.
- Vitamin D therapy, regardless of agent, is associated with decreased mortality.

Generic Name	Brand Name	Form of Vitamin D	Dosage Forms	Initial Dose	Dosage Range	Frequency of Administration		
Nutritional Vita	Nutritional Vitamin D							
Ergocalciferol ^a	Generic	D ₂	ро	Varies based on 250HD levels	400–50,000 international units	Daily (doses of 400–2,000 international units)		
Cholecalciferol ^a	Generic	D ₃	ро			Weekly or monthly for higher doses (50,000 international units)		
Active Vitamin	D							
Calcitriol	Calcijex	D ₃	IV	1–2 mcg	0.5–5 mcg	Three times per week		
	Rocaltrol		ро	0.25 mcg	0.25–5 mcg	Daily or three times per week		
Vitamin D Anal	ogs							
Paricalcitol	Zemplar	D ₂	ро	CKD nondialysis: 1 mcg daily or 2 mcg three times per week if PTH ≤500 pg/mL (≤500 ng/L; ≤54 pmol/L); 2 mcg daily or 4 mcg three time per week if PTH >500 pg/mL (>500 ng/L; >54 pmol/L)	1–4 mcg	Daily or three times per week		
				Stage 5 CKD: mcg dose based on ratio of PTH/80 and administered three times per week				
			IV	Stage 5 CKD: 0.04–1 mcg three times per week	2.5–15 mcg	Three times per week		
Doxercalciferol	Hectorol	D ₂	ро	CKD nondialysis: 1 mcg daily	5–20 mcg	Daily or three times per week		
				Stage 5 CKD: 10 mcg three times per week				
			IV	Stage 5 CKD: 4 mcg three times per week	2–8 mcg	Three times per week		
					-			

^aMultiple preparations are available that are not listed.

Calcimimetics

- Cinacalcet reduces PTH secretion by increasing the sensitivity of the calcium sensing receptor.
- The most common adverse events include nausea and vomiting.
- The starting dose is 30 mg daily, which can be titrated to the desired PTH and calcium concentrations every 2 to 4 weeks to a maximum of 180 mg daily.

Hyperlipidemia

- The prevalence of hyperlipidemia increases as renal function declines.
- ► KDIGO guidelines recommend treatment with a statin in adults ≥50 years with stage 1 to 5 CKD.
- for example;
 - atorvastatin 20mg
 - fluvastatin 80mg
 - rosuvastatin 10mg
 - simvastatin 20 mg

Thank You