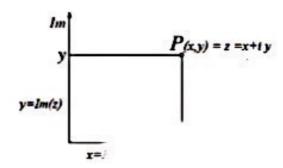
Complex Numbers

A complex number is a number of the form z = x + iy, where x and y are real numbers and i is imaginary unit $(i = \sqrt{-1})$ with the property that $i^2 = -1$. also complex number can be written as the ordered pair (x,y) and plotted as a point in plane called the complex plane.



In complex plane: the horizontal x-axis called the real axis (Re) and the vertical y-axis called the image.

Remarks:

1- The set all complex number will be denoted by C.

2-Electrical engineers use j instead of i because i reserved for the current.

3-Let z_1 and $z_2 \in \mathbb{C}$, then $z_1 = z_2$ if $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$.

Example: Solve the equation $2x^2 + 3x + 5 = 0$.

Sol.

$$x = \frac{-3 \mp \sqrt{(3)^2 - (4 * 2 * 5)}}{2 * 2}$$
$$= \frac{-3 \mp \sqrt{9 - 40}}{4}$$
$$= \frac{-3 \mp \sqrt{-31}}{4} = \frac{-3 \mp i \sqrt{31}}{4}$$

The modulus and The conjugate of Complex Numbers

The modulus of complex number z = x + i y is $|z| = \sqrt{x^2 + y^2}$.

$$|z| = \sqrt{x^2 + y^2}$$

The conjugate of complex number is obtained by changing the sign of the

imaginary part. Hence the complex conjugate of z = x + iy is $\bar{z} = x - iy$.

$$\bar{z} = x - i y.$$

Properties of Modulus and Conjugate of Complex Numbers:

Let z be a complex number then

1)
$$|z| = |-z| = |\bar{z}|$$
.

2)
$$|z|^2 = |z^2| = z \bar{z} = (Re(z))^2 + (Im(z))^2$$

3)
$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$$
 for all $z_1, z_2 \in \mathbb{C}$.

4)
$$|z_1z_2| = |z_1||z_2|$$
 for all $z_1, z_2 \in \mathbb{C}$.

5)
$$\left|\frac{z_1}{z_1}\right| = \frac{|z_1|}{z_1}$$
 for all $z_1, z_2 \in \mathbb{C}$.

6)
$$|z_1z_2|^2 = |z_1|^2 |z_2|^2 = (|z_1||z_2|)^2$$
 for all $z_1, z_2 \in \mathbb{C}$.

7)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
 for all $z_1, z_2 \in \mathbb{C}$.

8)
$$\overline{z_1} \ \overline{z_2} = \overline{z_1} \cdot \overline{z_2}$$
 for all $z_1, z_2 \in \mathbb{C}$.

9)
$$\bar{z} = z$$

$$10)\,z\cdot\bar{z}=|z|^2$$

Operations on Complex Numbers

1) Addition and Subtraction of Complex Numbers

Two complex numbers are added/subtracted by added/subtracted separately the two real parts and the two imaginary parts.

If
$$z_1 = a + ib$$
 and $z_2 = c + id$
Then $z_1 + z_2 = (a + c) + l(b + d)$
 $z_1 - z_2 = (a - c) + l(b - d)$

Example:

If
$$z_1 = 2 + 4i$$
 and $z_2 = 3 - i$, find $z_1 + z_2$, $z_1 - z_2$ and $z_2 - z_1$?
Sol.

$$z_1 + z_2 = (2+3) + i(4-1) = 5 + i3$$

$$z_1 - z_2 = (2-3) + i(4-(-1)) = -1 + i5$$

$$z_2 - z_1 = (3-2) + i(-1-4) = 1 - i5$$

2) Multiplication and Division of Complex Numbers

If $z_1 = a + ib$ and $z_2 = c + id$ two complex numbers, then:

The multiplication of two complex numbers z_1 and z_2 is defined by:

$$z_1 z_2 = (a + ib)(c + id) = ac + iad + ibc + i^2bd$$

$$since i^2 = -1$$

$$\therefore z_1 z_2 = (ac - bd) + i(ad + bc)$$

The division of two complex numbers z_1 and z_2 is defined by:

$$\frac{z_1}{z_2} = \frac{a+ib}{c+id}$$

$$= \frac{a+ib}{c+id} * \frac{c-id}{c-id} = \frac{ac-iad+ibc-i^2bd}{c^2+d^2}$$

$$= \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$$

$$\frac{z_1}{z_2} = \frac{(ac + bd)}{c^2 + d^2} + i \frac{(bc - ad)}{c^2 + d^2}$$

Example:

If
$$z_1 = 1 - 3i$$
, $z_2 = -2 + 5i$ and $z_3 = -3 - 4i$, find:

a)
$$z_1 z_2$$

b)
$$\frac{z_1}{z_2}$$

c)
$$\frac{z_1 z_2}{z_1 + z_2}$$

a)
$$z_1 z_2$$
 b) $\frac{z_1}{z_1}$ c) $\frac{z_1 z_2}{z_1 + z_2}$ d) $z_1 z_2 z_3$

Sol.

a)
$$z_1z_2 = (1-3i)(-2+5i) = -2+5i+6i+15 = 13+11i$$

b)
$$\frac{z_1}{z_2} = \frac{(1-3i)}{(-3-4i)} * \frac{(-3+4i)}{(-3+4i)} = \frac{-3+4i+9i+12}{9+16} = \frac{9+13i}{25}$$

c)
$$\frac{z_1 z_2}{z_1 + z_2}$$
 (H.W)

Ans.
$$\frac{9}{5} - i \frac{37}{5}$$

d)
$$z_1 z_2 z_3$$
 (H.W)

Complex equations

If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal. Hence if a + i b = c + i d, then a = c and b = d.

Example: Solve the complex equations:

a)
$$2(x + iy) = 6 - 3i$$

b)
$$(1+2i)(-2-3i) = a+ib$$

c)
$$(2-3i) = \sqrt{a+ib}$$
 (H.W)

Ans.
$$a = -5$$
, $b = -12$

d)
$$(x - i 2y) + (y - i 3x) = 2 + 3i$$

Ans.
$$x = -7$$
, $y = 9$

Sol.

a)
$$2(x+iy) = 6-3i$$

$$2x + i 2y = 6 - 3i$$

$$\therefore 2x = 6 \implies x = 3$$

$$\therefore 2y = -3 \implies y = \frac{-3}{2}$$

b)
$$(1+2i)(-2-3i) = a+ib$$

$$-2-3i-4i+6=a+ib$$

$$4 - 7i = a + ib$$

$$\therefore a = 4 , b = -7$$