هندسة تقنيات /لو جززة الطبية

كلبة الرشبي /لجامعة

ELECTRONIC CIRCUITS AND DEVICES

DIODE CHARACTERISTICS

(2)

مرحلة ثانية

م.م. دينا جمال

Diode Switching Circuits

Basic Concepts:

Diode switching circuits typically contain two or more diodes, each of which is connected to an independent voltage source. Understanding the operation of a diode switching circuit depends on determining which diodes, if any, are forward biased and which, if any, are reverse biased. The key to this determination is remembering that a diode is forward biased only if its anode is positive with respect to its cathode (see Fig. 2-1). One of the very import applications of diode switching circuits is logic gates.

Fig. 2-1

Logic Gates:

Diodes can be used to form logic gates, which perform some of the logic operations required in digital computers.

$<$ OR Gate:

It has output when there a signal in any input channels (see Fig. 2-2).

Input voltages		State of diodes		Output voltage
V_{A}	V_{B}	D_{1}	D_{2}	V_{o}
0	0	off	off	0
0	1	off	on	1
1	0	on	off	1
1	1	on	on	1

Fig. 2-2

$<$ AND Gate:

It has output only when all inputs are present (see Fig. 2-3).

Input voltages		State of diodes		Output voltage
V_{A}	V_{B}	D_{1}	D_{2}	V_{o}
0	0	on	on	0
0	1	on	off	0
1	0	off	on	0
1	1	off	off	1

Fig. 2-3

Example 2-1:

Determine which diodes are forward biased and which are reverse biased in the circuits shown in Fig. 2-4. Assuming a 0.7-V drop across each forward-biased diode, determine the output voltage V_{o}.

Fig. 2-4

Solution:

Appling a golden rule, a diode is forward biased when

$$
V^{\text {Anode }}-V^{\text {Catode }}=V^{+v e}>V_{T}, \text { yields: }
$$

In (a) the net forward-biasing voltage between supply and input for each diode is

$$
\begin{array}{ll}
D_{1} \& D_{3}: & +5-(+5)=0 V \\
D_{2} \& D_{4}: & +5-(-5)=10 V
\end{array}
$$

Therefore, D_{2} and D_{4} are forward biased and D_{1} and D_{3} are reverse biased.

$$
V_{o}=-5+0.7=-4.3 V
$$

While in (b) the net forward-biasing voltage between supply and input for each diode is
$D_{1}: \quad+15-(+5)=+10 \mathrm{~V}$,
$D_{2}: \quad+15-0=+15 \mathrm{~V}$,
$D_{3}: \quad+15-(-10)=+25 \mathrm{~V}$.
Therefore, D_{3} is forward biased and D_{1} and D_{2} are reverse biased.

$$
V_{o}=-10+0.7=-9.3 V
$$

Finally, in (c) the net forward-biasing voltage between supply and input for each diode is

$$
\begin{aligned}
& D_{1}:-5-(-10)=+5 V \\
& D_{2}:+5-(-10)=+15 \mathrm{~V} .
\end{aligned}
$$

Therefore, D_{2} is forward biased and D_{1} is reverse biased.

$$
V_{o}=+5-0.7=+4.3 V
$$

Exercise:

Determine V_{o} and I for each circuit in Fig. 2-5. Assume that each of the diodes in these circuits has a forward voltage drop of 0.7 V .

(a)

(b)

(c)

Fig. 2-5

