

مرحلة ثانية

كلية الرشيد الجامعة

م.م. دينا جمال

ELECTRONIC CIRCUITS AND DEVICES

DIODE CHARACTERISTICS

(2)

Diode Switching Circuits

Basic Concepts:

Diode switching circuits typically contain two or more diodes, each of which is connected to an independent voltage source. Understanding the operation of a diode switching circuit depends on determining which diodes, if any, are forward biased and which, if any, are reverse biased. The key to this determination is remembering that *a diode is forward biased only if its anode is positive with respect to its cathode* (see Fig. 2-1). One of the very import applications of diode switching circuits is logic gates.

Logic Gates:

Diodes can be used to form logic gates, which perform some of the logic operations required in digital computers.

✓ OR Gate:

It has output when there a signal in any input channels (see Fig. 2-2).

$V_A \bullet \bullet$	Input voltages		State of diodes		Output voltage
D_2	V_A	V_B	D_1	D_2	V_o
$V_B \bullet \bullet V_o$	0	0	off	off	0
ا ک	0	1	off	on	1
ξ^{R}	1	0	on	off	1
<u> </u>	1	1	on	on	1

Fig. 2-2

It has output only when all inputs are present (see Fig. 2-3).

$\mathbf{P} + V$	Input voltages		State of diodes		Output voltage
	V_A	V_B	D_1	D_2	V_o
$D_1 \{K\}$	0	0	on	on	0
$V_A \bullet \bullet \bullet V_o$	0	1	on	off	0
D_2	1	0	off	on	0
	1	1	off	off	1

Example 2-1:

Determine which diodes are forward biased and which are reverse biased in the circuits shown in Fig. 2-4. Assuming a 0.7-V drop across each forward-biased diode, determine the output voltage V_o .

Solution:

Appling a golden rule, a diode is forward biased when

 $V^{Anode} - V^{Catode} = V^{+ve} > V_T$, yields:

In (a) the net forward-biasing voltage between supply and input for each diode is

 $D_1 \& D_3$: +5 - (+5) = 0*V*,

 $D_2 \& D_4$: +5 - (-5) = 10V.

Therefore, D_2 and D_4 are forward biased and D_1 and D_3 are reverse biased. $V_o = -5 + 0.7 = -4.3V.$

While in (b) the net forward-biasing voltage between supply and input for each diode is

- $D_1: +15 (+5) = +10V,$
- D_2 : +15 0 = +15*V*,

 D_3 : +15 - (-10) = +25*V*.

Therefore, D_3 is forward biased and D_1 and D_2 are reverse biased.

 $V_o = -10 + 0.7 = -9.3V.$

Finally, in (c) the net forward-biasing voltage between supply and input for each diode is

 $D_1: -5 - (-10) = +5V,$ $D_2: +5 - (-10) = +15V.$ Therefore, D_2 is forward biased and D_1 is reverse biased.

 $V_o = +5 - 0.7 = +4.3V.$

Exercise:

Determine V_o and I for each circuit in Fig. 2-5. Assume that each of the diodes in these circuits has a forward voltage drop of 0.7 V.

Fig. 2-5