Al-Rasheed University
College
Medical Instrumentation
Tech. Eng.

Measurements & Medical Transducers

2nd Stage

Lecturer: Dr. Suhail Najm Abdullah

Lecture 3

System of Units of Measurements

2.1 Introduction

- The physical quantities الكميات الفيزيائية must be defined both in <u>kind</u> and <u>value</u>. The measure of kind of physical quantity is called "the unit".
- For example, when we say (100 meters), we know that the **meter is the unit** of length and that the **value of length is one hundred.** The physical quantity, length, is therefore defined by the unit, meter. Without the unit, the number (100) has no physical meaning.
- > In science and engineering, two kinds of units are used:
 - ► fundamental.
 - derived.

2.2 Fundamental and Derived Units

Fundamental units are units that are independently selected and are not dependent on any other units. They are also called "base units". The most famous examples of fundamental units are the units meter for length (m), kilogram for mass (kg), and second for time (s).

Table (1) shows the seven basic SI unit quantity and units of measurement, with their unit symbol:

Table (1):

Quantity	Unit	Symbol
Length	Meter	m
Mass	Kilogram	kg
Time	Second	S
Electrical current	Ampere	Α
Thermodynamic temperature	Kelvin	K
Luminous intensity	Candela	cd

Amount of substance

Mole mol

- > Derived units are the units that can be expressed mainly in terms of fundamental units.
- For example, the unit of area of some rectangle (m^2) and it is derived from
 Area = length * width

The length and width the equation above are measured in meters. Therefore, the unit for area is resulting from $(m * m = m^2)$.

The volume can be calculated as;

The unit for volume can be derived as;

$$m * m * m = m^3$$


As another example, the density can be calculated as;

$$density = \frac{mass}{volume} \quad \frac{kg}{m^3}$$

• The derived units may take special names such as the names of the famous scientists. i.e., Newton is the measure of force which equals to **Kg m/s²** while it is commonly referred as **N** (the first letter of the scientist rule). Some of the derived units are listed in Table (3).

Table (3): Examples of some physical quantities with their corresponding symbols.

No.	Quantity	Unit	Symbol
1	Area	Sequare meter	m ²
2	Volume	Cubic meter	m ³
3	Velocity	Meter per second	m/s
4	Acceleration	Meter per square second	m/s ²
5	Angular velocity	Radian per second	Rad/sec
6	Angular acceleration	Radian per square second	Rad/sec ²
7	الكثافةDensity	Kilogram per cubic meter	Kg/m ³
8	Mass flow rate	Kilogram per second	Kg/s
	(liquids)		
9	Volum flow rate	Cubic meter per second	m³/s
10	القو ةForce	Newton	N
11	الضغط Pressure	Newton per square meter	N/m ²
12	عزم الدوران Torque	Newton meter	Nm

No.	Quantity	Unit	Symbol
12	الزخم Momentum	Kilogram meter per second	Kg m/s
13	Work, Energy	Joule	J
14	Power	Watt	W
15	Voltage	Volt	V
16	Electric charge	Coulumb	С
17	Electric Field strength	Volt per meter	V/m
18	Electric resistance	Ohm	Ω
19	Electric capacitance	Farad	F
20	Electric inductance	Henry	Н
21	Electric conductance	Seimens	S
22	Resistivity	Ohm meter	Ωm
23	Permittivity	Farad per meter	F/m

2.3 Multiples and Submultiples of units

The units in actual use are divided into submultiples for the purpose of measuring quantities smaller than the unit itself.

> Table(3) lists the decimal multiples and submultiples of units. $10^{-n} \rightarrow \text{multiples}$ $10^{-n} \rightarrow \text{submultiples}$

10 ⁿ	Prefixe	Example	10 ⁿ	Prefixe	Example
1018	exa- (E)	exajoule, EJ	10 ⁻¹	deci- (d)	decibel, dB
10 ¹⁵	peta- (P)	petasecond, Ps	10-2	centi- (c)	centimeter, cm
10 ¹²	tera- (T)	terahertz, THz	10 ⁻³	milli- (m)	millimeter, mm
10 ⁹	giga- (G)	gigavolt, GV	10 ⁻⁶	micro- (μ)	microgram, μg
10 ⁶	miga- (M)	megawatt, MW	10-9	nano- (n)	nanometer, nm
10 ³	kilo- (K)	kilogram, kg	10 ⁻¹²	pico- (p)	picofarad, pF
10 ²	hecto- (H)	(rarely used)	10 ⁻¹⁵	femto- (f)	femtometer, fm
10 ¹	deca- (Da)	(rarely used)	10 ⁻¹⁸	atto- (atto)	attocoulomb, aC

• Table (4) lists some of common conversion factors for **English** into **SI** units.

Table (4) English units into SI conversions

No.	Quantity	English unit	Symbol	SI unit
1	Length	Foot	Ft	0.3048 m
		Yard	Yd	0.9144 m
		Inch	In	25.4 mm
		Mile	Mi	$1.609~\mathrm{km}$
		Nautical mile	N mi	1.852 km
2	Mass	Pound	Lb	0.4539237 kg
		Ounce	Oz	28.35 g
		Slug	Slug	14.6 kg
3	Force	poundal	Pdl	0.138255 N
4	Power	Horse power	Hp	745.7 w
5	Work, energy	Foot-poundal	Ft-pdl	0.0421401 J
6	Temperature	Fahrenheit	F	$C = \frac{5}{q} (F - 32) C^{\circ}$
				$\mathbf{K} = \frac{5}{q}(F + 459.67)k^{\circ}$

Example (1): The floor area of an office building is 5000 m² calculate the floor area in ft²

Solution

$$1 \text{ ft} = 0.3048 \text{ m}$$

$$\therefore A = 5000 \text{ m}^2 \text{ x} \left(\frac{1 \text{ ft}}{0.3048 \text{ m}}\right)^2 = 53819.552 \text{ ft}^2$$

Example (2): The velocity of light in free space is expressed as 3 X 10⁸ m/s. Give the velocity of light in (i) km/hr (ii) ft/s

Solution

(i)
$$1 \text{ km} = 1000 \text{ m} \rightarrow \text{m} = \frac{1}{1000} \text{ km}$$

 $1 \text{ hr} = 3600 \text{ s} \rightarrow \text{s} = \frac{1}{3600} \text{ hr}$
 $\therefore C = 3 \times 10^8 \frac{m}{s}$
 $= 3 \times 10^8 \frac{3600 \text{ km}}{1000 \text{ hr}} = 10.8 \times 10^8 \text{ km/hr}$
(ii) $1 \text{ ft} = 0.3048 \text{ m} \rightarrow \text{m} = \frac{1}{0.3048} \text{ ft}$
 $\therefore C = 3 \times 10^8 \frac{m}{s}$
 $= 3 \times 10^8 \frac{1}{0.3048} \frac{1}{s} = 9.8425 \text{ ft/s}$

Quiz