




Medical Instrumentations Techniques Engineering Al-Rasheed University College Second Level

# Digital Techniques Lecture 02

Prepared by: Ass. Prof. Dr. Rasha Thabit

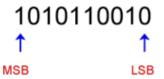
Teacher: Dr. Suhail Najm

#### NUMBER SYSTEMS CONVERSION

This lecture presents the method of converting binary, octal, and hexadecimal numbers to decimal numbers.

#### Lecture objectives

At the end of this lecture, the student should be able to:


- Convert decimal numbers to binary, octal, and hexadecimal.
- 2- Convert octal to binary and vice versa.
- 3- Convert hexadecimal to binary and vice versa.

#### Conversion of decimal numbers to other types

The following subsections present the method of converting decimal numbers to binary, octal and hexadecimal numbers.

#### Conversion of decimal to binary number

To convert the decimal number to binary, divide the number by 2 (the base) until the value is 0. When the number is fractional number, the numbers after point are multiplied by 2. The least significant bit (LSB) and the most significant bit (MSB) are as shown:



# **Example:** Convert the decimal number $(13)_{10}$ to binary.

Step 1: Divide the given number 13 repeatedly by 2 until you get '0' as the quotient

Step 2: Write the remainders in the reverse 1 1 0 1

$$13_{10} = 1101_2$$
 (Decimal) (Binary)

**Example:** Convert the decimal number (36)<sub>10</sub> to binary.

| Division by 2 | Quotient | Remainder |
|---------------|----------|-----------|
| 36 ÷ 2        | 18       | 0 (LSB)   |
| 18 ÷ 2        | 9        | 0         |
| 9 ÷ 2         | 4        | 1         |
| 4 ÷ 2         | 2        | 0         |
| 2 ÷ 2         | 1        | 0         |
| 1 ÷ 2         | 0        | 1 (MSB)   |

 $(36)_{10} = (100100)_2$ 

**Example:** Convert the decimal number (39.5)<sub>10</sub> to binary.

| Division by 2       | Quotient | Remainder |
|---------------------|----------|-----------|
| 39 ÷ 2              | 19       | 1 (LSB)   |
| 19 ÷ 2              | 9        | 1         |
| 9 ÷ 2               | 4        | 1         |
| 4 ÷ 2               | 2        | 0         |
| 2 ÷ 2               | 1        | 0         |
| 1 ÷ 2               | 0        | 1 (MSB)   |
| Multiplication by 2 |          |           |
| 0.5 × 2             | 1        | 0         |
| 0 × 2               | 0        |           |

 $(39.5)_{10} = (100111.10)_2$ 

#### Conversion of decimal to octal number

To convert the decimal number to octal, divide the number by 8 (the base) until the value is 0. When the number is fractional number, the numbers after point are multiplied by 8.

**Example:** Convert the decimal number (266)<sub>10</sub> to octal.

| Division by 8 | Quotient | Remainder |
|---------------|----------|-----------|
| 266 ÷ 8       | 33       | 2 (LSB)   |
| 33 ÷ 8        | 4        | 1         |
| 4 ÷ 8         | 0        | 4 (MSB)   |

$$(266)_{10} = (412)_8$$

**Example:** Convert the decimal number  $(20.75)_{10}$  to octal.

| Division by 8 | Quotient | Remainder |
|---------------|----------|-----------|
| 20 ÷ 8        | 2        | 4 (LSB)   |
| 2 ÷ 8         | 0        | 2 (MSB)   |
| 0.75 × 8      | 6        | 0         |

$$(266)_{10} = (24.6)_8$$

#### Conversion of decimal to hexadecimal number

To convert the decimal number to hexadecimal, divide the number by 16 (the base) until the value is 0. When the number is fractional number, the numbers after point are multiplied by 16.

**Example:** Convert the decimal number (423)<sub>10</sub> to hexadecimal.

| Division by 16 | Quotient | Remainder |
|----------------|----------|-----------|
| 423 ÷ 16       | 26       | 7 (LSB)   |
| 26 ÷ 16        | 1        | 10 ⇔ A    |
| 1 ÷ 16         | 0        | 1 (MSB)   |

$$(423)_{10} = (1A7)_{16}$$

## Conversion of octal numbers to binary and vice versa

The following subsections present the method of converting octal numbers to their binary form and the reverse.

#### Conversion of octal to binary number

The conversion from octal to binary is performed by converting each octal digit to its 3-bit binary equivalent as shown in the following table.

| Octal  | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| Binary | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |

**Example:** Convert the octal number (472)<sub>8</sub> to binary.

| Octal  | 4   | 7   | 2   |
|--------|-----|-----|-----|
| Binary | 100 | 111 | 010 |

$$(472)_8 = (100111010)_2$$

#### Conversion of binary to octal number

The conversion from binary to octal is performed as follows:

Step1: Group the binary digits into 3's starting at least significant digit (if the number of bits is not evenly divisible by 3, then add 0's at the most significant end).

Step 2: Write the equivalent octal number to each group.

**Example:** Convert the binary number (10101110)<sub>2</sub> to octal.

| Binary | 10 | 101 | 110 |
|--------|----|-----|-----|
| Octal  | 2  | 5   | 6   |

 $(10101110)_2 = (256)_8$ 

**Example:** Convert the decimal number (177)<sub>10</sub> to its 8-bit binary equivalent by first converting to octal.

| Division by 8 | Quotient | Remainder |
|---------------|----------|-----------|
| 177 ÷ 8       | 22       | 1 (LSB)   |
| 22 ÷ 8        | 2        | 6         |
| 2 ÷ 8         | 0        | 2 (MSB)   |

$$(177)_{10} = (261)_8$$

| Octal  | 2  | 6   | 1   |
|--------|----|-----|-----|
| Binary | 10 | 110 | 001 |

 $(177)_{10} = (10110001)_2$ 

# Conversion of hexadecimal numbers to binary and vice versa

The following subsections present the method of converting hexadecimal numbers to their binary form and the reverse.

### Conversion of hexadecimal to binary number

The conversion from octal to binary is performed by converting each octal digit to its 4-bit binary equivalent as shown in the following table.

| Hexadecimal | Binary | Hexadecimal | Binary |
|-------------|--------|-------------|--------|
| 0           | 0000   | 8           | 1000   |
| 1           | 0001   | 9           | 1001   |
| 2           | 0010   | A           | 1010   |
| 3           | 0011   | В           | 1011   |
| 4           | 0100   | С           | 1100   |
| 5           | 0101   | D           | 1101   |
| 6           | 0110   | Е           | 1110   |
| 7           | 0111   | F           | 1111   |

Example: Convert the octal number (39C8)<sub>16</sub> to binary.

| Hexadecimal | 3    | 9    | С    | 8    |
|-------------|------|------|------|------|
| Binary      | 0011 | 1001 | 1100 | 1000 |

 $(39C8)_{16} = (0011100111001100)_2$ 

# Conversion of binary to hexadecimal number

The conversion from binary to hexadecimal is performed as follows:

Step1: Group the binary digits into 4's starting at least significant digit (if the number of bits is not evenly divisible by 4, then add 0's at the most significant end).

Step 2: Write the equivalent octal number to each group.

**Example:** Convert the binary number (1001111001110000)<sub>2</sub> to hexadecimal.

| Binary      | 1001 | 1110 | 0111 | 0000 |
|-------------|------|------|------|------|
| Hexadecimal | 9    | Е    | 7    | 0    |

 $(1001111001110000)_2 = (9E70)_{16}$ 

**Example:** Convert the binary number (11111110100011)2 to hexadecimal.

| Binary      | 1 | 1111 | 1010 | 0011 |
|-------------|---|------|------|------|
| Hexadecimal | 1 | F    | A    | 3    |

 $(11111110100011)_2 = (1FA3)_{16}$ 

# Exercise (Lecture 02)

# Answer the following questions:

- 1- Convert the following numbers to decimal:
  - $(641)_8$ ,  $(10011101)_2$ ,  $(24CE)_{16}$
- 2- Convert (3117)<sub>10</sub> to hexadecimal, then from hexadecimal to binary.
- 3- Convert (1001011110110101)<sub>2</sub> to hexadecimal.
- 4- Convert (3527)<sub>8</sub> to hexadecimal.