

Al-Rasheed University Collage Dept. of Medical Instrument Tech. Eng. Second Class / Mathematics

1

Taylor and Maclaurin Series

Roweda.M.Mohammed

We start by supposing that *f* is any function that can be represented by a power series

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + c_3(x - a)^3 + c_4(x - a)^4 + \dots |x - a| < \mathbf{R}$$

Let's try to determine what the coefficients c_n must be in terms of *f*.

To begin, notice that if we put x = a in Equation 1, then all terms after the first one are 0 and we get

$$f(a) = C_0$$

We can differentiate the series in Equation 1 term by term:

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \dots |x-a| < \mathbf{R}$$

and substitution of x = a in Equation 2 gives

$$f'(a) = C_1$$

Now we differentiate both sides of Equation 2 and obtain

$$f''(x) = 2c_2 + 2 \cdot 3c_3(x - a) + 3 \cdot 4c_4(x - a)^2 + \dots |x - a| < \mathbf{R}$$

Again we put x = a in Equation 3. The result is

$$f''(a) = 2C_2$$

Let's apply the procedure one more time. Differentiation of the series in Equation 3 gives

$$f''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots |x-a| < \mathbf{R}$$

and substitution of x = a in Equation 4 gives

$$f''(a) = 2 \cdot 3c_3 = 3!c_3$$

By now you can see the pattern. If we continue to differentiate and substitute x = a, we obtain

$$f^{(n)}(a) = 2 \cdot 3 \cdot 4 \cdot \cdots \cdot nC_n = n!C_n$$

Solving this equation for the *n*th coefficient c_n , we get

This formula remains vec $c_n = \frac{f^{(n)}(a)}{n!}$ n = 0 if we adopt the conventions that 0! = 1 and n = 1. Thus we have proved the following theorem.

5 Theorem If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \qquad |x - a| < R$$

then its coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Substituting this formula for c_n back into the series, we see that *if f* has a power series expansion at a, then it must be of the following form.

6
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

The series in Equation 6 is called the Taylor series of the function *f* at *a* (or about *a* or centered at *a*).

For the special case a = 0 the Taylor series becomes

7
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

This case arises frequently enough that it is given the special name Maclaurin series.

Example 1

Find the Maclaurin series of the function $f(x) = e^x$ and its radius of convergence.

Solution:

If $f(x) = e^x$, then $f^{(n)}(x) = e^x$, so $f^{(n)}(0) = e^0 = 1$ for all *n*. Therefore the Taylor series for *f* at 0 (that is, the Maclaurin series) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Example

Find the Maclaurin series of the function $f(x) = e^x$ and its radius of convergence.

Solution:

If $f(x) = e^x$, then $f^{(n)}(x) = e^x$, so $f^{(n)}(0) = e^0 = 1$ for all *n*. Therefore the Taylor series for *f* at 0 (that is, the Maclaurin series) is

Example 1 – *Solution*

cont'd

To find the radius of convergence we let $a_n = x^n/n!$. Then

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n}\right| = \frac{|x|}{n+1} \to 0 < 1$$

so, by the Ratio Test, the series converges for all x and the radius of convergence is $R = \infty$.

The conclusion we can draw from Theorem 5 and Example 1 is that *if* e^x has a power series expansion at 0, then

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

So how can we determine whether *e^x does* have a power series representation?

Let's investigate the more general question: Under what circumstances is a function equal to the sum of its Taylor series? In other words, if *f* has derivatives of all orders, when is it true that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 11

As with any convergent series, this means that f(x) is the limit of the sequence of partial sums. In the case of the Taylor series, the partial sums are

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x - a)^i$$

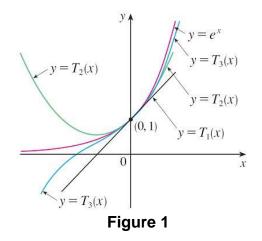
= $f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$

Notice that T_n is a polynomial of degree *n* called the *n*th-degree Taylor polynomial of *f* at *a*.

For instance, for the exponential function $f(x) = e^x$, the result of Example 1 shows that the Taylor polynomials at 0 (or Maclaurin polynomials) with n = 1, 2, and 3 are

$$T_1(x) = 1 + x$$
 $T_2(x) = 1 + x + \frac{x^2}{2!}$ $T_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$

The graphs of the exponential function and these three Taylor polynomials are drawn in Figure 1.



As *n* increases, $T_n(x)$ appears to approach e^x in Figure 1. This suggests that e^x is equal to the sum of its Taylor series.

Example 2

Find the Maclaurin series for $f(x) = (1 + x)^k$, where k is any real number.

Solution:

Arranging our work in columns, we have

$$f(x) = (1 + x)^{k}$$

$$f(0) = 1$$

$$f'(x) = k(1 + x)^{k-1}$$

$$f'(0) = k$$

$$f'(0) = k$$

$$f''(0) = k(k-1)$$

$$f''(x) = k(k-1)(1 + x)^{k-2}$$

$$f''(0) = k(k-1)$$

$$f'''(0) = k(k-1)(k-2)$$

 $f^{(n)}(x) = k(k-1)\cdots(k-n+1)(1+x)^{k-n} f^{(n)}(0) = k(k-1)\cdots(k-n+1)$

Example 2 – *Solution*

cont'd

Therefore the Maclaurin series of $f(x) = (1 + x)^k$ is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{k(k-1)\cdots(k-n+1)}{n!} x^n$$

This series is called the **binomial series**.

Example 2 – Solution

cont'd

If its *n*th term is a_n , then

$$\frac{a_{n+1}}{a_n} = \frac{|k(k-1)\cdots(k-n+1)(k-n)x^{n+1}}{(n+1)!} \cdot \frac{n!}{k(k-1)\cdots(k-n+1)x^n}$$
$$= \frac{|k-n|}{n+1} |x| = \frac{\left|1 - \frac{k}{n}\right|}{1 + \frac{1}{n}} |x| \to |x| \quad \text{as } n \to \infty$$

Thus, by the Ratio Test, the binomial series converges if |x| < 1 and diverges if |x| > 1.

We collect in the following table, for future reference, some important Maclaurin series that we have derived in this section and the preceding

one.

 $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$ R = 1 $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$ $R = \infty$ $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ $R = \infty$ $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ $R = \infty$ $\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$ R = 1 $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ R = 1 $(1+x)^{k} = \sum_{n=0}^{\infty} \binom{k}{n} x^{n} = 1 + kx + \frac{k(k-1)}{2!} x^{2} + \frac{k(k-1)(k-2)}{3!} x^{3} + \cdots \quad R = 1$

Table 1 Important Maclaurin Series and Their Radii of Convergence