

# Al-Rasheed University Collage Dept. of Medical Instrument Tech. Eng. Second Class / Mathematics II

### **INFINITE SERIES**

Roweda.M.Mohammed

### Definition of the Limit of a Sequence

#### **Definition of the Limit of a Sequence**

Let L be a real number. The **limit** of a sequence  $\{a_n\}$  is L, written as

$$\lim_{n\to\infty} a_n = L$$

if for each  $\varepsilon > 0$ , there exists M > 0 such that  $|a_n - L| < \varepsilon$  whenever n > M. If the limit L of a sequence exists, then the sequence **converges** to L. If the limit of a sequence does not exist, then the sequence **diverges**.

# Limit of a Sequence

#### **THEOREM 9.1** Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that

$$\lim_{x \to \infty} f(x) = L.$$

If  $\{a_n\}$  is a sequence such that  $f(n) = a_n$  for every positive integer n, then

$$\lim_{n\to\infty}a_n=L.$$

# **Properties of Limits of Sequences**

#### **THEOREM 9.2** Properties of Limits of Sequences

Let 
$$\lim_{n\to\infty} a_n = L$$
 and  $\lim_{n\to\infty} b_n = K$ .

**1.** 
$$\lim_{n \to \infty} (a_n \pm b_n) = L \pm K$$

$$3. \lim_{n\to\infty} (a_n b_n) = LK$$

2. 
$$\lim_{n\to\infty} ca_n = cL$$
, c is any real number

**4.** 
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{K}$$
,  $b_n \neq 0$  and  $K \neq 0$ 

### **Absolute Value Theorem**

### **THEOREM 9.4** Absolute Value Theorem

For the sequence  $\{a_n\}$ , if

$$\lim_{n \to \infty} |a_n| = 0 \quad \text{then} \quad \lim_{n \to \infty} a_n = 0.$$

### **Definitions of Convergent and Divergent Series**

#### **Definitions of Convergent and Divergent Series**

For the infinite series  $\sum_{n=1}^{\infty} a_n$ , the **nth partial sum** is given by

$$S_n = a_1 + a_2 + \cdot \cdot \cdot + a_n.$$

If the sequence of partial sums  $\{S_n\}$  converges to S, then the series  $\sum_{n=1}^{\infty} a_n$  converges. The limit S is called the sum of the series.

$$S = a_1 + a_2 + \cdots + a_n + \cdots$$

If  $\{S_n\}$  diverges, then the series **diverges**.

# Convergence of a Geometric Series

#### **THEOREM 9.6** Convergence of a Geometric Series

A geometric series with ratio r diverges if  $|r| \ge 1$ . If 0 < |r| < 1, then the series converges to the sum

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \quad 0 < |r| < 1.$$

### **Properties of Infinite Series**

#### **THEOREM 9.7 Properties of Infinite Series**

If  $\sum a_n = A$ ,  $\sum b_n = B$ , and c is a real number, then the following series converge to the indicated sums.

$$1. \sum_{n=1}^{\infty} ca_n = cA$$

**2.** 
$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B$$

3. 
$$\sum_{n=1}^{\infty} (a_n - b_n) = A - B$$

# Limit of *n*th Term of a Convergent Series

### **THEOREM 9.8** Limit of *n*th Term of a Convergent Series

If 
$$\sum_{n=1}^{\infty} a_n$$
 converges, then  $\lim_{n\to\infty} a_n = 0$ .

### nth-Term Test for Divergence

### THEOREM 9.9 nth-Term Test for Divergence

If 
$$\lim_{n\to\infty} a_n \neq 0$$
, then  $\sum_{n=1}^{\infty} a_n$  diverges.

# The Integral Test

#### **THEOREM 9.10** The Integral Test

If f is positive, continuous, and decreasing for  $x \ge 1$  and  $a_n = f(n)$ , then

$$\sum_{n=1}^{\infty} a_n \quad \text{and} \quad \int_1^{\infty} f(x) \, dx$$

either both converge or both diverge.

# Convergence of *p*-Series

### THEOREM 9.11 Convergence of p-Series

The *p*-series

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$$

- **1.** converges if p > 1, and
- 2. diverges if 0 .

# **Direct Comparison Test**

### **THEOREM 9.12** Direct Comparison Test

Let  $0 < a_n \le b_n$  for all n.

- **1.** If  $\sum_{n=1}^{\infty} b_n$  converges, then  $\sum_{n=1}^{\infty} a_n$  converges.
- **2.** If  $\sum_{n=1}^{\infty} a_n$  diverges, then  $\sum_{n=1}^{\infty} b_n$  diverges.

# **Limit Comparison Test**

#### **THEOREM 9.13 Limit Comparison Test**

Suppose that  $a_n > 0$ ,  $b_n > 0$ , and

$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = L$$

where L is *finite and positive*. Then the two series  $\sum a_n$  and  $\sum b_n$  either both converge or both diverge.

# **Alternating Series Test**

### **THEOREM 9.14** Alternating Series Test

Let  $a_n > 0$ . The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ and } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge if the following two conditions are met.

$$1. \lim_{n\to\infty} a_n = 0$$

2. 
$$a_{n+1} \leq a_n$$
, for all  $n$ 

### **Definitions of Absolute and Conditional Convergence**

### **Definitions of Absolute and Conditional Convergence**

- 1.  $\sum a_n$  is absolutely convergent if  $\sum |a_n|$  converges.
- **2.**  $\sum a_n$  is **conditionally convergent** if  $\sum a_n$  converges but  $\sum |a_n|$  diverges.

### **Ratio Test**

#### **THEOREM 9.17 Ratio Test**

Let  $\sum a_n$  be a series with nonzero terms.

- **1.**  $\sum a_n$  converges absolutely if  $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ .
- 2.  $\sum a_n$  diverges if  $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$  or  $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ .
- 3. The Ratio Test is inconclusive if  $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ .

### **Root Test**

#### **THEOREM 9.18 Root Test**

Let  $\sum a_n$  be a series.

- **1.**  $\sum a_n$  converges absolutely if  $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$ .
- **2.**  $\sum a_n$  diverges if  $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$  or  $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ .
- 3. The Root Test is inconclusive if  $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$ .

### Guidelines for Testing a Series for Convergence or Divergence

#### Guidelines for Testing a Series for Convergence or Divergence

- **1.** Does the *n*th term approach 0? If not, the series diverges.
- **2.** Is the series one of the special types—geometric, *p*-series, telescoping, or alternating?
- **3.** Can the Integral Test, the Root Test, or the Ratio Test be applied?
- **4.** Can the series be compared favorably to one of the special types?

# **Summary of Tests for Series**

#### **Summary of Tests for Series**

| Test               | Series                                | Condition(s) of Convergence                             | Condition(s) of Divergence   | Comment                                       |
|--------------------|---------------------------------------|---------------------------------------------------------|------------------------------|-----------------------------------------------|
| nth-Term           | $\sum_{n=1}^{\infty} a_n$             |                                                         | $\lim_{n\to\infty}a_n\neq 0$ | This test cannot be used to show convergence. |
| Geometric Series   | $\sum_{n=0}^{\infty} ar^n$            | r  < 1                                                  | $ r  \ge 1$                  | Sum: $S = \frac{a}{1 - r}$                    |
| Telescoping Series | $\sum_{n=1}^{\infty} (b_n - b_{n+1})$ | $\lim_{n\to\infty}b_n=L$                                |                              | Sum: $S = b_1 - L$                            |
| p-Series           | $\sum_{n=1}^{\infty} \frac{1}{n^p}$   | <i>p</i> > 1                                            | $p \leq 1$                   |                                               |
| Alternating Series | $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$  | $0 < a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$ |                              | Remainder: $ R_N  \le a_{N+1}$                |

# **Summary of Tests for Series (cont'd)**

#### **Summary of Tests for Series**

| Test                                                 | Series                                        | Condition(s) of Convergence                                                                   | Condition(s)<br>of Divergence                                                              | Comment                                                                               |
|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Integral (f is continuous, positive, and decreasing) | $\sum_{n=1}^{\infty} a_n,$ $a_n = f(n) \ge 0$ | $\int_{1}^{\infty} f(x)  dx \text{ converges}$                                                | $\int_{1}^{\infty} f(x)  dx \text{ diverges}$                                              | Remainder: $0 < R_N < \int_N^\infty f(x)  dx$                                         |
| Root                                                 | $\sum_{n=1}^{\infty} a_n$                     | $\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$                                                       | $\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$                                                    | Test is inconclusive if $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1.$                      |
| Ratio                                                | $\sum_{n=1}^{\infty} a_n$                     | $\lim_{n \to \infty} \left  \frac{a_{n+1}}{a_n} \right  < 1$                                  | $\lim_{n\to\infty} \left  \frac{a_{n+1}}{a_n} \right  > 1$                                 | Test is inconclusive if $\lim_{n \to \infty} \left  \frac{a_{n+1}}{a_n} \right  = 1.$ |
| Direct Comparison $(a_n, b_n > 0)$                   | $\sum_{n=1}^{\infty} a_n$                     | $0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges                                     | $0 < b_n \le a_n$<br>and $\sum_{n=1}^{\infty} b_n$ diverges                                |                                                                                       |
| Limit Comparison $(a_n, b_n > 0)$                    | $\sum_{n=1}^{\infty} a_n$                     | $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n \text{ converges}$ | $\lim_{n\to\infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n \text{ diverges}$ |                                                                                       |

# Definitions of *n*th Taylor Polynomial and *n*th Maclaurin Polynomial

#### Definitions of nth Taylor Polynomial and nth Maclaurin Polynomial

If f has n derivatives at c, then the polynomial

$$P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

is called the *n*th Taylor polynomial for f at c. If c = 0, then

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

is also called the nth Maclaurin polynomial for f.

# **Taylor's Theorem**

#### **THEOREM 9.19 Taylor's Theorem**

If a function f is differentiable through order n + 1 in an interval I containing c, then, for each x in I, there exists z between x and c such that

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + R_n(x)$$

where

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}.$$

### **Definition of Power Series**

#### **Definition of Power Series**

If x is a variable, then an infinite series of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$

is called a **power series.** More generally, an infinite series of the form

$$\sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \dots + a_n (x-c)^n + \dots$$

is called a **power series centered at c**, where c is a constant.

# Convergence of a Power Series

#### **THEOREM 9.20** Convergence of a Power Series

For a power series centered at c, precisely one of the following is true.

- **1.** The series converges only at c.
- 2. There exists a real number R > 0 such that the series converges absolutely for |x c| < R, and diverges for |x c| > R.
- **3.** The series converges absolutely for all x.

The number R is the **radius of convergence** of the power series. If the series converges only at c, the radius of convergence is R = 0, and if the series converges for all x, the radius of convergence is  $R = \infty$ . The set of all values of x for which the power series converges is the **interval of convergence** of the power series.

### **Properties of Functions Defined by Power Series**

#### **THEOREM 9.21** Properties of Functions Defined by Power Series

If the function given by

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$
  
=  $a_0 + a_1 (x - c) + a_2 (x - c)^2 + a_3 (x - c)^3 + \cdots$ 

has a radius of convergence of R > 0, then, on the interval (c - R, c + R), f is differentiable (and therefore continuous). Moreover, the derivative and anti-derivative of f are as follows.

1. 
$$f'(x) = \sum_{n=1}^{\infty} na_n(x-c)^{n-1}$$
  
=  $a_1 + 2a_2(x-c) + 3a_3(x-c)^2 + \cdots$ 

2. 
$$\int f(x) dx = C + \sum_{n=0}^{\infty} a_n \frac{(x-c)^{n+1}}{n+1}$$
$$= C + a_0(x-c) + a_1 \frac{(x-c)^2}{2} + a_2 \frac{(x-c)^3}{3} + \cdots$$

The *radius of convergence* of the series obtained by differentiating or integrating a power series is the same as that of the original power series. The *interval of convergence*, however, may differ as a result of the behavior at the endpoints.

# **Operations with Power Series**

#### **Operations with Power Series**

Let  $f(x) = \sum a_n x^n$  and  $g(x) = \sum b_n x^n$ .

**1.** 
$$f(kx) = \sum_{n=0}^{\infty} a_n k^n x^n$$

**2.** 
$$f(x^N) = \sum_{n=0}^{\infty} a_n x^{nN}$$

1. 
$$f(kx) = \sum_{n=0}^{\infty} a_n k^n x^n$$
  
2.  $f(x^N) = \sum_{n=0}^{\infty} a_n x^{nN}$   
3.  $f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n$ 

# The Form of a Convergent Power Series

#### **THEOREM 9.22** The Form of a Convergent Power Series

If f is represented by a power series  $f(x) = \sum a_n(x-c)^n$  for all x in an open interval I containing c, then  $a_n = f^{(n)}(c)/n!$  and

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + \dots$$

### **Definitions of Taylor and Maclaurin Series**

#### **Definitions of Taylor and Maclaurin Series**

If a function f has derivatives of all orders at x = c, then the series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + f'(c)(x-c) + \cdots + \frac{f^{(n)}(c)}{n!} (x-c)^n + \cdots$$

is called the **Taylor series for** f(x) at c. Moreover, if c = 0, then the series is the **Maclaurin series for** f.

# **Convergence of Taylor Series**

#### **THEOREM 9.23** Convergence of Taylor Series

If  $\lim_{n\to\infty} R_n = 0$  for all x in the interval I, then the Taylor series for f converges and equals f(x),

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n.$$

# **Guidelines for Finding a Taylor Series**

#### **Guidelines for Finding a Taylor Series**

**1.** Differentiate f(x) several times and evaluate each derivative at c.

$$f(c), f'(c), f''(c), f'''(c), \cdots, f^{(n)}(c), \cdots$$

Try to recognize a pattern in these numbers.

2. Use the sequence developed in the first step to form the Taylor coefficients  $a_n = f^{(n)}(c)/n!$ , and determine the interval of convergence for the resulting power series

$$f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \cdots + \frac{f^{(n)}(c)}{n!}(x - c)^n + \cdots$$

3. Within this interval of convergence, determine whether or not the series converges to f(x).

# Power Series for Elementary Functions

#### **Power Series for Elementary Functions**

| Function                                                                                                                                                                                            | Interval of<br>Convergence |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| $\frac{1}{x} = 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + (x - 1)^4 - \dots + (-1)^n (x - 1)^n + \dots$                                                                                                  | 0 < <i>x</i> < 2           |
| $\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + \dots$                                                                                                                        | -1 < x < 1                 |
| $\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + \frac{(-1)^{n-1}(x-1)^n}{n} + \dots$                                                                           | $0 < x \le 2$              |
| $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!} + \dots$                                                                                  | $-\infty < x < \infty$     |
| $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$                                                                  | $-\infty < x < \infty$     |
| $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$                                                                      | $-\infty < x < \infty$     |
| $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots$                                                                      | $-1 \le x \le 1$           |
| $\arcsin x = x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots + \frac{(2n)!x^{2n+1}}{(2^n n!)^2 (2n+1)} + \dots$ | $-1 \le x \le 1$           |
| $(1+x)^k = 1 + kx + \frac{k(k-1)x^2}{2!} + \frac{k(k-1)(k-2)x^3}{3!} + \frac{k(k-1)(k-2)(k-3)x^4}{4!} + \cdots$                                                                                     | -1 < x < 1*                |

<sup>\*</sup> The convergence at  $x = \pm 1$  depends on the value of k.