

Al-Rasheed University Collage

Dept. of Medical Instrument Tech. Eng. Second Class / Mathematics II

Eigenvalues and Eigenvectors

Roweda.M.Mohammed

Eigenvalues and Eigenvectors

- The vector \mathbf{x} is an eigenvector of matrix \boldsymbol{A} and λ is an eigenvalue of A if: $\mathrm{Ax}=\lambda \mathrm{x}$ (assume non-zero x)
- Eigenvalues and eigenvectors are only defined for square matrices (i.e., $m=n$)
- Eigenvectors are not unique (e.g., if λ is an eigenvector, so is $k \lambda$)
- Zero vector is a trivial solution to the eigenvalue equation for any number λ and is not considered as an eigenvector.
- Interpretation: the linear transformation implied by A cannot change the direction of the eigenvectors λ, but change only their magnitude.

We summarize the computational approach for determining eigenpairs (λ, \mathbf{x}) (eigenvalues and eigen vector) as a two-step procedure:

Step I. To find the eigenvalues of \mathbf{A} compute the roots of the characteristic equation $\operatorname{det}\left(\mathbf{A}-\lambda \boldsymbol{I}_{\mathrm{n}}\right)=0$.

Step II. To find an eigenvector corresponding to an eigenvalue μ, compute a nontrivial solution to the homogeneous linear system $\left(A-\mu l_{n}\right) \mathbf{x}=0$.
Example1: Find eigenpairs of $\mathbf{A}=\left[\begin{array}{rr}1 & 1 \\ -2 & 4\end{array}\right]$.
Step I. Find the eigenvalues. $c(\lambda)=\operatorname{det}\left(A-\lambda l_{2}\right)=\operatorname{det}\left(\left[\begin{array}{cc}1-\lambda & 1 \\ -2 & 4-\lambda\end{array}\right]\right)$

$$
=(1-\lambda)(4-\lambda)+2=\lambda^{2}-5 \lambda+6
$$

Thus the characteristic polynomial is a quadratic and the eigenvalues are the solutions of $\lambda^{2}-5 \lambda+6=0$. We factor the quadratic to get $(\lambda-3)(\lambda-2)=0$ so the eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=2$.

The eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=2$.
Step II. To find corresponding $\quad\left(\mathbf{A}-\lambda_{i} \mathbf{I}_{n}\right) \mathbf{x}=\mathbf{0}$ for
Case $\lambda_{1}=3$: We have that $\left(A-3 I_{2}\right) \mathbf{x}=\mathbf{0}$ has augmented matrix $\left[\begin{array}{ll|l}-2 & 1 & 0 \\ -2 & 1 & 0\end{array}\right]$ and its rref is $\left[\begin{array}{cc|c}1 & \frac{-1}{2} & 0 \\ 0 & 0 & 0\end{array}\right]$. (Verify.) Thus if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ we have $x_{1}=(1 / 2) x_{2}$ so $x=\left[\begin{array}{c}(1 / 2) x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}1 / 2 \\ 1\end{array}\right], x_{2} \neq 0$. Choosing $x_{2}=2$, to conveniently get integer entries, gives eigenvector $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Case $\lambda_{2}=2$: We have that $\left(\mathbf{A}-2 \mathbf{I}_{2}\right) \mathbf{p}=\mathbf{0}$ has augmented matrix
$\left[\begin{array}{ll|l}-1 & 1 & 0 \\ -2 & 2 & 0\end{array}\right]$ and its rref is $\left[\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$. (Verify.) Thus if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ we have
$x_{1}=x_{2}$ so $x=\left[\begin{array}{l}x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right], x_{2} \neq 0$. Choosing $x_{2}=1$ gives eigenvector
$\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Note: rref means row reduced echelon form.

Computing λ and v

- To find the eigenvalues λ of a matrix A, find the roots of the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=0
$$

$$
\begin{array}{lc}
\text { Example 2: } & A=\left[\begin{array}{ll}
5 & -2 \\
6 & -2
\end{array}\right]
\end{array} \begin{gathered}
\mathrm{Ax}=\lambda \mathrm{x} \\
\operatorname{det}\left[\begin{array}{cc}
5-\lambda & -2 \\
6 & -2-\lambda
\end{array}\right]=0 \text { or } \lambda^{2}-3 \lambda+2=0 \text { or } \lambda_{1}=1, \lambda_{2}=2
\end{gathered} x_{1}=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right], x_{2}=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right] .
$$

For our matrix $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 3 & 0 & 2\end{array}\right)$

we write the characteristic equation:

$\underbrace{\left|\begin{array}{ccc}2-\lambda & 0 & 3 \\ 1 & 2-\lambda & 0 \\ 3 & 0 & 2-\lambda\end{array}\right|}=\underbrace{(2-\lambda)^{3}+3[-3(2-\lambda)}_{\text {The expansion }}]=\underbrace{=-\lambda^{3}+6 \lambda^{2}-3 \lambda-10}_{\text {The standard form }}=\underbrace{(2-\lambda)(\lambda-5)(\lambda+1)}_{\text {The factorization }}=0$

The determinant

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { for } \lambda_{1}=2 \\
\left(\begin{array}{lll}
0 & 0 & 3 \\
1 & 0 & 0 \\
3 & 0 & 0
\end{array}\right) \underline{k}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\underline{k}_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{array}
\end{array} \\
& \begin{array}{l}
\begin{array}{l}
\text { for } \lambda_{2}=5 \\
\left(\begin{array}{ccc}
-3 & 0 & 3 \\
1 & -3 & 0 \\
3 & 0 & -3
\end{array}\right) \underline{k}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\underline{k}_{2}=\left(\begin{array}{l}
3 \\
1 \\
3
\end{array}\right)
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { for } \lambda_{3}=-1 \\
\left(\begin{array}{lll}
3 & 0 & 3 \\
1 & 3 & 0 \\
3 & 0 & 3
\end{array}\right) \underline{k}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\underline{k}_{3}=\left(\begin{array}{c}
-3 \\
1 \\
3
\end{array}\right)
\end{array}
\end{aligned}
$$

Example 4: Find the eigenvalues and corresponding eigenvectors of

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right]
$$

The characteristic polynomial is $\lambda^{3}-6 \lambda^{2}+11 \lambda-6$
Its factors are

$$
(\lambda-1)(\lambda-2)(\lambda-3)
$$

So the eigenvalues are 1,2 , and 3.

Corresponding eigenvectors are

$$
\mathbf{x}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right] \quad \mathbf{x}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
4
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{r}
-1 \\
1 \\
4
\end{array}\right]
$$

