

Al-Rasheed University Collage •
 Dept. of Medical Instrument Tech. Eng.

 Second Class / Mathematics II•
Inverse Matrices 3*3

Roweda.M.Mohammed

Cofactor Method for Inverses

- Let $\underline{A}=\left(a_{i j}\right)$ be an nxn matrix
- Recall, the co-factor C_{ij} of element a_{ij} is:

$$
c_{i j}=(-1)^{i+j}\left|\underline{M}_{i j}\right|
$$

- $\underline{M}_{i \mathrm{ij}}$ is the $(\mathrm{n}-1) \times(\mathrm{n}-1)$ matrix made by removing the ROW i and COLUMN j of \underline{A}

Cofactor Method for Inverses

- Put all co-factors in a matrix - called the matrix of co-factors:

Cofactor Method for Inverses

- Inverse of \underline{A} is given by:
$\underline{A}^{-1}=\frac{1}{|\underline{A}|}(\text { matrix of co-factors })^{\top}$

Examples

- Calculate the inverse of $\underline{A}=$

$$
\underline{M}_{11}=(\mathrm{d}) \quad\left|\underline{\mathrm{M}}_{11}\right|=\mathrm{d} \quad \mathrm{C}_{11}=\mathrm{d}
$$

Examples

- Calculate the inverse of $\underline{A}=$

$$
\underline{\mathrm{M}}_{12}=(\mathrm{c}) \quad\left|\underline{\mathrm{M}}_{12}\right|=\mathrm{c} \quad \mathrm{C}_{12}=-\mathrm{c}
$$

Examples

- Calculate the inverse of $\underline{A}=$

$$
\underline{M}_{21}=[\mathrm{b}] \quad\left|\underline{M}_{21}\right|=\mathrm{b} \quad \mathrm{C}_{12}=-\mathrm{b}
$$

Examples

- Calculate the inverse of $\underline{A}=$

$$
\underline{M}_{22}=(\mathrm{a}) \quad\left|\underline{\mathrm{M}}_{22}\right|=\mathrm{a} \quad \mathrm{C}_{22}=\mathrm{a}
$$

Examples

- Calculate the inverse of $\underline{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
\mathrm{C}_{11}=\mathrm{d} \quad \mathrm{C}_{12}=-\mathrm{c} \quad \mathrm{C}_{21}=-\mathrm{b} \quad \mathrm{C}_{22}=\mathrm{a}
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{|\underline{A}|}(\text { matrix of co-factors })^{\top}
$$

Examples

- Calculate the inverse of $\underline{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
\mathrm{C}_{11}=\mathrm{d} \quad \mathrm{C}_{12}=-\mathrm{c} \quad \mathrm{C}_{21}=-\mathrm{b} \quad \mathrm{C}_{22}=\mathrm{a}
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{(a d-b c)}(\text { matrix of co-factors })^{\top}
$$

Examples

- Calculate the inverse of $\underline{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
\mathrm{C}_{11}=\mathrm{d} \quad \mathrm{C}_{12}=-\mathrm{c} \quad \mathrm{C}_{21}=-\mathrm{b} \quad \mathrm{C}_{22}=\mathrm{a}
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)^{\top}
$$

Examples

- Calculate the inverse of $\underline{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
\mathrm{C}_{11}=\mathrm{d} \quad \mathrm{C}_{12}=-\mathrm{c} \quad \mathrm{C}_{21}=-\mathrm{b} \quad \mathrm{C}_{22}=\mathrm{a}
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{ll}
C_{11} & C_{21} \\
C_{12} & C_{22}
\end{array}\right)
$$

Examples

- Calculate the inverse of $\underline{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
C_{11}=d \quad C_{12}=-c \quad C_{21}=-b \quad C_{22}=a
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{ll}
d & C_{21} \\
C_{12} & C_{22}
\end{array}\right)
$$

Examples

- Calculate the inverse of $\underline{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
C_{11}=d \quad C_{12}=-c \quad C_{21}=-b \quad C_{22}=a
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{ll}
d & -b \\
C_{12} & C_{22}
\end{array}\right)
$$

Examples

- Calculate the inverse of $\underline{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
C_{11}=d \quad C_{12}=-c \quad C_{21}=-b \quad C_{22}=a
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{cc}
d & -b \\
-c & C_{22}
\end{array}\right)
$$

Examples

- Calculate the inverse of $\underline{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right.$
- Found that:

$$
C_{11}=d \quad C_{12}=-c \quad C_{21}=-b \quad C_{22}=a
$$

- So,

$$
\underline{A}^{-1}=\frac{1}{(a d-b c)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right.
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=$
$\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 4\end{array}$
- Find the co-factors:

$$
\underline{M}_{11}=\left(\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right) \quad\left|\underline{M}_{11}\right|=2 \quad C_{11}=2
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}$
- Find the co-factors:

$$
\underline{M}_{12}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) \quad\left|\underline{M}_{12}\right|=0 \quad C_{12}=0
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=$

$$
\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
2 & 3 & 4
\end{array}
$$

- Find the co-factors:

$$
\underline{M}_{13}=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right) \quad\left|\underline{M}_{13}\right|=-1 \quad C_{13}=-1
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right)$
- Find the co-factors:

$$
\underline{M}_{21}=\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right) \quad\left|\underline{M}_{21}\right|=1 \quad C_{21}=-1
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right)$
- Find the co-factors:

$$
\underline{M}_{22}=\left(\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right) \quad\left|\underline{M}_{22}\right|=2 \quad C_{22}=2
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right)$
- Find the co-factors:

$$
\underline{M}_{23}=\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right) \quad\left|\underline{M}_{23}\right|=1 \quad C_{23}=-1
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right)$
- Find the co-factors:

$$
\underline{M}_{31}=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) \quad\left|\underline{M}_{31}\right|=0 \quad C_{31}=0
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right)$
- Find the co-factors:

$$
\underline{M}_{32}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \quad\left|\underline{M}_{32}\right|=1 \quad C_{32}=-1
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right)$
- First find the co-factors:

$$
\underline{M}_{33}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \quad\left|\underline{M}_{33}\right|=1 \quad C_{33}=1
$$

Examples 3x3 Matrix

- Calculate the inverse of $\underline{B}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4\end{array}\right)$
- Next the determinant: use the top row:

$$
\begin{aligned}
|\underline{B}| & =1 x\left|\underline{M}_{11}\right|-1 \times\left|\underline{M}_{12}\right|+1 \times\left|\underline{M}_{13}\right| \\
& =2-0+(-1)=1
\end{aligned}
$$

Examples 3x3 Matrix

- Using the formula,

$$
\underline{B}^{-1}=\frac{1}{|\underline{\mid B}|}(\text { matrix of co-factors })^{\top}
$$

$$
=\frac{1}{1} \text { (matrix of co-factors }^{\top}
$$

Examples 3x3 Matrix

- Using the formula,

$$
\begin{aligned}
\underline{\mathrm{B}}^{-1} & =\frac{1}{|\underline{\mathrm{~B}}|}(\text { matrix of co-factors })^{\top} \\
& =\frac{1}{1}\left(\begin{array}{rrr}
2 & 0 & 1 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)^{\top}
\end{aligned}
$$

Examples 3x3 Matrix

- Using the formula,

$$
\begin{aligned}
\underline{\mathrm{B}}^{-1} & =\frac{1}{|\underline{B}|}(\text { matrix of co-factors })^{\top} \\
& =\left(\begin{array}{rrr}
2 & -1 & 0 \\
0 & 2 & -1 \\
-1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

