

Al-Rasheed University Collage • Dept. of Medical Instrument Tech. Eng. Second Class / Mathematics II•

Inverse Matrices 3*3

Roweda.M.Mohammed

Cofactor Method for Inverses

• Let $\underline{A} = (a_{ii})$ be an nxn matrix

• Recall, the **co-factor** C_{ij} of element a_{ij} is:

$$C_{ij} = (-1)^{i+j} |\underline{M}_{ij}|$$

 <u>M</u>_{ij} is the (n-1) x (n-1) matrix made by removing the ROW i and COLUMN j of <u>A</u>

Cofactor Method for Inverses

 Put all co-factors in a matrix – called the matrix of co-factors:

Cofactor Method for Inverses

• Inverse of <u>A</u> is given by:

• Calculate the inverse of $\underline{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

- Calculate the inverse of $\underline{A} = \begin{bmatrix} c \\ c \end{bmatrix}$
 - $\underline{\mathsf{M}}_{12} = \begin{bmatrix} \mathsf{c} \end{bmatrix} \qquad |\underline{\mathsf{M}}_{12}| = \mathsf{c} \qquad \mathsf{C}_{12} = -\mathsf{c}$

b

a

• Calculate the inverse of <u>A</u> =

$\underline{M}_{21} = [b] \qquad |\underline{M}_{21}| = b$ $C_{12} = -b$

• Calculate the inverse of $\underline{A} =$

Calculate the inverse of <u>A</u> =

$$C_{11} = d \quad C_{12} = -c \quad C_{21} = -b \quad C_{22} = a$$

So,

$$\underline{A}^{-1} = \frac{1}{|\underline{A}|} \text{ (matrix of co-factors)}^{\mathsf{T}}$$

Calculate the inverse of <u>A</u> =

$$C_{11} = d \quad C_{12} = -c \quad C_{21} = -b \quad C_{22} = a$$

So,

$$\underline{A}^{-1} = \frac{1}{(ad-bc)} \text{ (matrix of co-factors)}^{\mathsf{T}}$$

Calculate the inverse of <u>A</u> =

• Found that:

$$C_{11} = d \quad C_{12} = -c \quad C_{21} = -b \quad C_{22} = a$$

• So, $\underline{A}^{-1} = \frac{1}{(ad-bc)} \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}^{T}$

Calculate the inverse of <u>A</u> =

$$C_{11} = d$$
 $C_{12} = -c$ $C_{21} = -b$ $C_{22} = a$
• So,

$$\underline{A}^{-1} = \frac{1}{(ad-bc)} \begin{pmatrix} C_{11} & C_{21} \\ C_{12} & C_{22} \end{pmatrix}$$

Calculate the inverse of <u>A</u> =

$$C_{11} = d \quad C_{12} = -c \quad C_{21} = -b \quad C_{22} = a$$

• So,

$$\underline{A}^{-1} = \frac{1}{(ad-bc)} \begin{pmatrix} d & C_{21} \\ C_{12} & C_{22} \end{pmatrix}$$

Calculate the inverse of <u>A</u> =

• Found that:

$$C_{11} = d \quad C_{12} = -c \quad C_{21} = -b \quad C_{22} = a$$

• So, $\underline{A}^{-1} = \frac{1}{(ad-bc)} \begin{bmatrix} d & -b \\ C_{12} & C_{22} \end{bmatrix}$

Calculate the inverse of <u>A</u> =

$$C_{11} = d \quad C_{12} = -c \quad C_{21} = -b \quad C_{22} = a$$

So,

$$\underline{A}^{-1} = \frac{1}{(ad-bc)} \begin{pmatrix} d & -b \\ -c & C_{22} \end{pmatrix}$$

Calculate the inverse of <u>A</u> =

$$C_{11} = d$$
 $C_{12} = -c$ $C_{21} = -b$ $C_{22} = a$
So,
1 $d -b$

$$\underline{A}^{-1} = \frac{1}{(ad-bc)} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$$

$$\underline{M}_{11} = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix} \quad |\underline{M}_{11}| = 2 \quad C_{11} = 2$$

• Calculate the inverse of <u>B</u> =

$$\underline{M}_{12} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \qquad |\underline{M}_{12}| = 0 \qquad C_{12} = 0$$

• Calculate the inverse of <u>B</u> =

$$\underline{M}_{13} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \quad |\underline{M}_{13}| = -1 \quad C_{13} = -1$$

• Calculate the inverse of <u>B</u> =

$$\underline{M}_{21} = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \quad |\underline{M}_{21}| = 1 \quad C_{21} = -1$$

• Calculate the inverse of <u>B</u> =

$$\underline{M}_{22} = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \quad |\underline{M}_{22}| = 2 \quad C_{22} = 2$$

• Calculate the inverse of <u>B</u> =

$$\underline{M}_{23} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \quad |\underline{M}_{23}| = 1 \quad C_{23} = -1$$

• Calculate the inverse of <u>B</u> =

$$\underline{M}_{31} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} |\underline{M}_{31}| = 0 \qquad C_{31} = 0$$

• Calculate the inverse of <u>B</u> =

$$\underline{M}_{32} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad |\underline{M}_{32}| = 1 \qquad C_{32} = -1$$

• Calculate the inverse of <u>B</u> =

• First find the co-factors:

$$\underline{M}_{33} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad |\underline{M}_{33}| = 1 \qquad C_{33} = 1$$

- Calculate the inverse of <u>B</u> = $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4 \end{pmatrix}$
- Next the determinant: use the top row:

$$|\underline{B}| = 1x |\underline{M}_{11}| - 1x |\underline{M}_{12}| + 1x |\underline{M}_{13}|$$
$$= 2 - 0 + (-1) = 1$$

• Using the formula,

$$\underline{B}^{-1} = \frac{1}{|\underline{B}|} \text{ (matrix of co-factors)}^{\mathsf{T}}$$

$$=\frac{1}{1}$$
 (matrix of co-factors)^T

• Using the formula,

$$\underline{B}^{-1} = \frac{1}{|\underline{B}|} \text{ (matrix of co-factors)}^{\mathsf{T}}$$

$$= \frac{1}{1} \begin{bmatrix} 2 & 0 & 1 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}^{\mathsf{T}}$$

• Using the formula,

$$\underline{B}^{-1} = \frac{1}{|\underline{B}|} \text{ (matrix of co-factors)}^{\mathsf{T}}$$
$$= \begin{array}{c} 2 & -1 & 0 \\ 0 & 2 & -1 \\ -1 & -1 & 1 \end{array}$$