

Al-Rasheed University Collage Dept. of Medical Instrument Tech. Eng. First Class / Mathematics

Indefinite integral

Roweda.M.Mohammed

1. Integration as differentiation in reverse

Suppose we differentiate the function $y=x^2$. We obtain $\frac{dy}{dx}=2x$. Integration reverses this process and we say that the integral of 2x is x^2 . Pictorially we can regard this as shown in Figure 1:

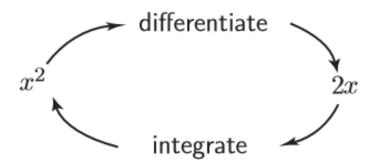
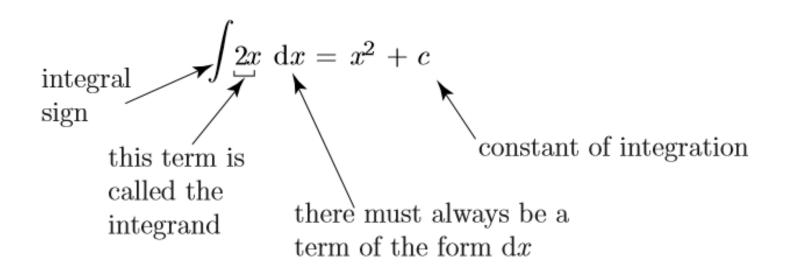


Figure 1

The symbol for integration, \int , is known as an **integral sign**. To integrate 2x we write



Exercises

- 1. (a) Write down the derivatives of each of: x^3 , $x^3 + 17$, $x^3 21$
 - (b) Deduce that $\int 3x^2 dx = x^3 + c$.
- 2. Explain why, when finding an indefinite integral, a constant of integration is always needed.

Answers

- 1. (a) $3x^2$, $3x^2$, $3x^2$ (b) Whatever the constant, it is zero when differentiated.
- Any constant will disappear (i.e. become zero) when differentiated so one must be reintroduced to reverse the process.

Table 1: Integrals of Common Functions

function	indefinite integral
f(x)	$\int f(x) dx$
constant, k	kx + c
x	$\frac{1}{2}x^2 + c$
x^2	$\frac{1}{3}x^3 + c$
x^n	$\frac{x^{n+1}}{n+1} + c, n \neq -1$
x^{-1} (or $\frac{1}{x}$)	$\ln x + c$
$\cos x$	$\sin x + c$
$\sin x$	$-\cos x + c$
$\cos kx$	$\frac{1}{k}\sin kx + c$
$\sin kx$	$\frac{\kappa}{-\frac{1}{k}\cos kx + c}$ $\frac{1}{k}\ln \sec kx + c$
$\tan kx$	$\frac{1}{k}\ln \sec kx + c$
e^x	$e^x + c$
e^{-x}	$-e^{-x}+c$
e^{-x} e^{kx}	$\frac{1}{k}e^{kx} + c$

Example 1

Use Table 1 to find the indefinite integral of x^7 : that is, find $\int x^7 dx$

Solution

From Table 1 note that $\int x^n dx = \frac{x^{n+1}}{n+1} + c$. In words, this states that to integrate a power of x, increase the power by 1, and then divide the result by the new power. With n=7 we find

$$\int x^7 dx = \frac{1}{8}x^8 + c$$

Example 2

Find the indefinite integral of $\cos 5x$: that is, find $\int \cos 5x \, dx$

Solution

From Table 1 note that
$$\int \cos kx \, dx = \frac{\sin kx}{k} + c$$

With
$$k = 5$$
 we find
$$\int \cos 5x \, dx = \frac{1}{5} \sin 5x + c$$

Example 3 Find $\int \cos 5t \, dt$

Solution

We integrated $\cos 5x$ in the previous example. Now the independent variable is t, so simply use Table 1 and replace every x with a t. With k=5 we find

$$\int \cos 5t \, dt = \frac{1}{5} \sin 5t + c$$

It follows immediately that, for example,

$$\int \cos 5\omega \, d\omega = \frac{1}{5} \sin 5\omega + c, \qquad \int \cos 5u \, du = \frac{1}{5} \sin 5u + c \quad \text{and so on.}$$

Example 4

Find the indefinite integral of $\frac{1}{x}$: that is, find $\int \frac{1}{x} dx$

Solution

This integral deserves special mention. You may be tempted to try to write the integrand as x^{-1} and use the fourth row of Table 1. However, the formula $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ is not valid when n=-1 as Table 1 makes clear. This is because we can never divide by zero. Look to the fifth entry of Table 1 and you will see $\int x^{-1} dx = \ln|x| + c$.

Example 5 Find
$$\int 12 \, dx$$
 and $\int 12 \, dt$

Solution

In this Example we are integrating a constant, 12. Using Table 1 we find

$$\int 12 \, dx = 12x + c \qquad \text{Similarly } \int 12 \, dt = 12t + c.$$

Exercises

1. Integrate each of the following functions with respect to x:

(a) x^9 , (b) $x^{1/2}$, (c) x^{-3} , (d) $1/x^4$, (e) 4, (f) \sqrt{x} ,

2. Find (a) $\int t^2 dt$, (b) $\int 6 dt$, (c) $\int \sin 3t dt$, (d) $\int e^{7t} dt$.