

Al-Rasheed University College Department of Medical Laboratory Technique
Chemistry Lecture 1

Prepared by
Dr. Kutaiba Ibrahim Alzand MSc. Yakoot Abdul Hakeem

Qualitative and Quantitative Analysis

> The discipline of analytical chemistry consists of qualitative analysis and quantitative analysis.
> The qualitative analysis deals with the identification of elements, ions, or compounds present in a sample (we may be interested in whether only a given substance is present).
> The quantitative analysis deals with the determination of how much of one or more constituents is present.

Qualitative analysis tells us what chemicals are present.
Quantitative analysis tells us how much.

Analytes are the components of a sample that are determined.

MOLES: THE BASIC UNIT FOR EQUATING THINGS

$>$ To simplify calculations, chemists have developed the concept of the mole, which is Avogadro's number (6.022×10^{23}) of atoms, molecules, ions, or other species. Numerically, it is the atomic, molecular, or formula weight of a substance expressed in grams.

The number of moles of a substance is calculated from

$$
\begin{equation*}
\text { Moles }=\frac{\text { grams }}{\text { formula weight }(\mathrm{g} / \mathrm{mol})} \tag{5.1}
\end{equation*}
$$

where formula weight represents the atomic or molecular weight of the substance. Thus,

$$
\begin{aligned}
\text { Moles } \mathrm{Na}_{2} \mathrm{SO}_{4} & =\frac{\mathrm{g}}{\mathrm{fw}}=\frac{\mathrm{g}}{142.04 \mathrm{~g} / \mathrm{mol}} \\
\text { Moles } \mathrm{Ag}^{+} & =\frac{\mathrm{g}}{\mathrm{fw}}
\end{aligned}=\frac{\mathrm{g}}{107.870 \mathrm{~g} / \mathrm{mol}}
$$

Since many experiments deal with very small quantities, a more convenient form of measurement is the millimole. The formula for calculating millimoles is

$$
\text { Millimoles }=\frac{\text { milligrams }}{\text { formula weight }(\mathrm{mg} / \mathrm{mmol})}
$$

Just as we can calculate the number of moles from the grams of material, we can likewise calculate the grams of material from the number of moles:

$$
\begin{aligned}
& \mathrm{g} \mathrm{Na}_{2} \mathrm{SO}_{4}=\text { moles } \times \mathrm{fw}=\text { moles } \times 142.04 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{~g} \mathrm{Ag}=\text { moles } \times \mathrm{fw}=\text { moles } \times 107.870 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Again, we usually work with millimole quantities, so

$$
\begin{equation*}
\text { Milligrams }=\text { millimoles } \times \text { formula weight }(\mathrm{mg} / \mathrm{mmol}) \tag{5.3}
\end{equation*}
$$

Note that $\mathrm{g} / \mathrm{mol}$ is the same as $\mathrm{mg} / \mathrm{mmol}, \mathrm{g} / \mathrm{L}$ the same as $\mathrm{mg} / \mathrm{mL}$, and $\mathrm{mol} / \mathrm{L}$ the same as mmol/mL.

$$
\begin{aligned}
& \mathrm{g} / \mathrm{mol}=\mathrm{mg} / \mathrm{mmol}= \\
& \text { formula weight; } \mathrm{g} / \mathrm{L}= \\
& \mathrm{mg} / \mathrm{mL} ; \mathrm{mol} / \mathrm{L}=\mathrm{mmol} / \mathrm{mL}= \\
& \text { molarity. }
\end{aligned}
$$

Example 5.2

$$
\text { (f.wt }=293.8 \mathrm{~g} / \mathrm{mol})
$$

Calculate the number of moles in $500 \mathrm{mg} \mathrm{Na} 2 \mathrm{WO}_{4}$ (sodium tungstate).
Solution moles $=\operatorname{mmol} \times 0.001$

$$
\frac{500 \mathrm{mg}}{293.8 \mathrm{mg} / \mathrm{mmol}} \times 0.001 \mathrm{~mol} / \mathrm{mmol}=0.00170 \mathrm{~mol}
$$

$$
\begin{aligned}
\text { moles } & =\mathrm{g} / \mathrm{f} . \mathrm{wt} \\
& =0.5 / 293.8=0.00170 \mathrm{~mol}
\end{aligned}
$$

Example 5.3

What is the weight, in milligrams, of $0.250 \mathrm{mmol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ (ferric oxide)?
Solution $\quad \mathrm{mg} \mathrm{Fe}_{2} \mathrm{O}_{3}=\mathrm{mmol} x$ f.wt (f.wt=159.7 g/mol)
$0.250 \mathrm{mmol} \times 159.7 \mathrm{mg} / \mathrm{mmol}=39.9 \mathrm{mg}$

How Do We Express Concentrations of Solutions?

$>$ Chemists express solution concentrations in a number of ways. We will review here the common concentration units that chemists use.

$$
M, N, \%, \mathrm{ppm}, \mathrm{ppb}, \mathrm{~g} / \mathrm{L}, \mathrm{mg} / \mathrm{dL}, \mathrm{meq} / \mathrm{L}
$$

$>$ Molarity (M) of a solution is defined as the number of moles of solute per liter of solution or as the number of millimoles of solute per milliliter of solution.

$$
\begin{array}{ll}
M=\text { mole } / \mathrm{L} & M=\mathrm{mmole} / \mathrm{mL} \\
\text { mole }=M \times \mathrm{L} & \mathrm{mmole}=M \times \mathrm{mL} \\
\text { mole }=\mathrm{g} / \mathrm{f} . \mathrm{wt} & \mathrm{mmole}=\mathrm{mg} / \mathrm{f} . \mathrm{wt} \\
M=\mathrm{g} / \mathrm{f} . \mathrm{wt} / \mathrm{L} & \mathrm{M}=\mathrm{mg} / \mathrm{f} . \mathrm{wt} / \mathrm{mL} \\
\mathrm{~g}=M \times \mathrm{L} \times \mathrm{f} . \mathrm{wt} & \mathrm{mg}=M \times \mathrm{mL} \times \mathrm{f} . \mathrm{wt}
\end{array}
$$

Example 5.4

A solution is prepared by dissolving $1.26 \mathrm{~g} \mathrm{AgNO}_{3}$ in a $250-\mathrm{mL}$ volumetric flask and diluting to volume. Calculate the molarity of the silver nitrate solution. How many millimoles AgNO_{3} were dissolved?

Solution $M=\mathrm{g} / \mathrm{f} . \mathrm{wt} / \mathrm{L}$

$$
M=\frac{1.26 \mathrm{~g} / 169.9 \mathrm{~g} / \mathrm{mol}}{0.250 \mathrm{~L}}=0.0297 \mathrm{~mol} / \mathrm{L}(\text { or } 0.0297 \mathrm{mmol} / \mathrm{mL})
$$

Then,

$$
\text { Millimoles }=(0.0297 \mathrm{mmol} / \mathrm{mL})(250 \mathrm{~mL})=7.42 \mathrm{mmol}
$$

$$
\mathrm{mmole}=M \times \mathrm{mL}
$$

Example 5.5

How many grams per milliliter of NaCl are contained in a 0.250 M solution?
Solution $\mathrm{g} / \mathrm{mL}=\mathrm{Mx}$ f.wt x 0.001
$0.250 \mathrm{~mol} / \mathrm{L}=0.250 \mathrm{mmol} / \mathrm{mL}$
$0.250 \mathrm{mmol} / \mathrm{mL} \times 58.4 \mathrm{mg} / \mathrm{mmol} \times 0.001 \mathrm{~g} / \mathrm{mg}=0.0146 \mathrm{~g} / \mathrm{mL}$

Example 5.6

How many grams $\mathrm{Na}_{2} \mathrm{SO}_{4}$ should be weighed out to prepare 500 mL of a 0.100 M solution?

Solution

$$
\begin{aligned}
\mathrm{g} & =M \times \mathrm{L} \times \mathrm{f} . \mathrm{wt} \\
& =0.1 \times(500 / 1000) \times 142=7.10 \mathrm{~g}
\end{aligned}
$$

$>$ Normality (N) of a solution is defined as the number of equivalents of solute per liter of solution or as the number of milliequivalents of solute per milliliter of solution.

$$
\begin{array}{lll}
N=\mathrm{eq} / \mathrm{L} & N=\mathrm{meq} / \mathrm{mL} & \mathrm{eq} \cdot \mathrm{wt}=\mathrm{f} \cdot \mathrm{wt} / n \\
\mathrm{eq}=N \mathrm{x} \mathrm{~L} & \mathrm{meq}=N \mathrm{x} \mathrm{~mL} & n=\text { number of reacting units } \\
\mathrm{eq}=\mathrm{g} / \mathrm{eq} \cdot \mathrm{wt} & \mathrm{meq}=\mathrm{mg} / \mathrm{eq} \cdot \mathrm{wt} & N=M \times n \\
N=\mathrm{g} / \mathrm{eq} \cdot \mathrm{wt} / \mathrm{L} & N=\mathrm{mg} / \mathrm{eq} \cdot \mathrm{wt} / \mathrm{mL} & \\
\mathrm{~g}=N \times \mathrm{L} \times \mathrm{eq} \cdot \mathrm{wt} & \mathrm{mg}=N \times \mathrm{mL} \times \mathrm{eq} \cdot \mathrm{wt} &
\end{array}
$$

$>$ The equivalent weight is the formula weight divided by the number of reacting units. Table 5.1 lists the reacting units used for different types of reactions

- For acids and bases, the number of reacting units is based on the number of protons (i.e., hydrogen ions) an acid will furnish or a base will react with.

Table 5.1

Reacting Units in Different Reactions
Reaction Type
Reacting Unit
Acid-base
Oxidation-reduction
H^{+}
Electron is based on the number of electrons an oxidizing or reducing agent will take on or supply.
$>$ Thus, for example, sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, has two reacting units of protons; that is, there are two equivalents of protons in each mole. Therefore,

$$
\text { Equivalent weight }=\frac{98.08 \mathrm{~g} / \mathrm{mol}}{2 \mathrm{eq} / \mathrm{mol}}=49.04 \mathrm{~g} / \mathrm{eq}
$$

$$
\text { Number of equivalents }(\mathrm{eq})=\frac{\mathrm{wt}(\mathrm{~g})}{\mathrm{eq} \mathrm{wt}(\mathrm{~g} / \mathrm{eq})}=\text { normality }(\mathrm{eq} / \mathrm{L}) \times \text { volume }(\mathrm{L})
$$

> We typically use milliequivalents (meq) instead of equivalents

$$
\mathrm{meq}=\frac{\mathrm{mg}}{\mathrm{eq} \mathrm{wt}(\mathrm{mg} / \mathrm{meq})}=\text { normality }(\mathrm{meq} / \mathrm{mL}) \times \mathrm{mL}
$$

Equivalent weight $\mathrm{g} / \mathrm{eq}=$
$\mathrm{mg} / \mathrm{meq} ; \mathrm{eq} / \mathrm{L}=\mathrm{meq} / \mathrm{mL}=$ normality.
$>$ In clinical chemistry, equivalents are frequently defined in terms of the number of charges on an ion rather than on the number of reacting units.
$>$ Thus, for example, the equivalent weight of Ca^{+2} is one-half its atomic weight, and the number of equivalents is twice the number of moles.

DENSITY CALCULATIONS-HOW DO WE CONVERT TO MOLARITY?

> The concentration of many fairly concentrated commercial acids and bases are usually given in terms of percent by weight.
> It is frequently necessary to prepare solutions of a given approximate molarity from these substances.
$>$ In order to do so, we must know the density in order to calculate the molarity. Sometimes substances list specific gravity rather than density.

$$
M=\% \times \mathrm{dx} 1000 / \mathrm{f} . \mathrm{wt}
$$

Density expresses the mass of a substance per unit volume. In SI units, density is expressed in units of kg / L or, alternatively, g / mL.

Specific gravity is the ratio of the mass of a substance to the mass of an equal volume of water.

2.5 L
 Hydrochloric Acid, 36.5-38.0\%

9535-03

Acide Hydrochlorique

'BAKER ANALYZED'® A.C.S. Reagent HCl

LOT

```
Meets A.C.S. Specifications
Meets Reagent Specifications for testing USP/NF monographs
```



```
Assay (as HCl) (by acid-base titm) . . . . . . . . . . . 36.5-38.0%
10 max.
Extractable Organic Substances . ................. 5 ppm max.
```

Free Chlonne (as Cl) 1 ppm max.

```Specific Gravity at \(60^{\circ} \% 60^{\circ} \mathrm{F}\)........................... 1.185-1.192
```

Bromide (Br)
Trace Impurties (in pom).
Phosphate (PO_{4})

```Sulfate (SO, )Sulfite \(\left(\mathrm{SO}_{3}\right)\)
Ammonium (NH)
```



```
    Trace lmpuntses (in ppb)}3\mathrm{ max
Aluminum (Al)
Arsenic and Antmony (as Ás)
Boron (B)
Calcium (Ca)
Chromium(Cr)
Coperer(CU)
God(AL)
Lron (Fe),
Lead (P) (M)
Manganese (Mr)
Mercury (Hg)
M Nickel (Ni) (K)
Sodium(Na)
In (Sn).
Titanum(Ti)."
Zinc(Zn)
```


SAF-T-DATA ${ }^{\text {TM }}$ System
HEALTH FLAMMABILITY REACTIVITY

NONE

SEVERE

LABORATORY PROTECTIVE EQUIPMENT
 \& SHIELD

LAB COAT $\& A P R O N$
STORAGE COLOR: WHITE

VENT
HOOD

PROPER GLOVES

DOT Name: HYDROCHLORIC ACID UN1789

CAS NO: 7647-01-0

J. T. Baker NEUTRASORB® or TEAM $®$ 'Low Na^{+}' acid neutralizers are recommended for spills of this product. MADE IN USA

$$
M=\% \times d \times 1000 / f . w t
$$

Speckalty Products

Calculate the molar concentration of $\mathrm{HNO}_{3}(63.0 \mathrm{~g} / \mathrm{mol})$ in a solution that has a specific gravity of 1.42 and is $70.5 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})$.

$$
\begin{aligned}
& M=\% \times \mathrm{dx} 1000 / \mathrm{f} . \mathrm{wt} \\
& M=0.705 \times 1.42 \times 1000 / 63=15.89
\end{aligned}
$$

Describe the preparation of 100 mL of 6.0 M HCl from a concentrated solution that has a specific gravity of 1.18 and is $37 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}(36.5 \mathrm{~g} / \mathrm{mol})$.

$$
\begin{gathered}
M=\% \times \mathrm{F} \times 1000 / \mathrm{f} . \mathrm{wt} \\
M=0.37 \times 1.18 \times 1000 / 36.5=11.96 \\
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
11.96 \times \mathrm{V}_{1}=6 \times 100 \\
\mathrm{~V}_{1}=50.16
\end{gathered}
$$

Thus, dilute 50.16 mL of the concentrated reagent to 100 mL

SOLID SAMPLES

$$
\begin{aligned}
\%(\mathrm{wt} / \mathrm{wt}) & =\left[\frac{\mathrm{wt} \mathrm{solute}(\mathrm{~g})}{\mathrm{wt} \text { sample }(\mathrm{g})}\right] \times 10^{2}(\% / \mathrm{g} \text { solute } / \mathrm{g} \text { sample }) \\
\mathrm{ppm}(\mathrm{wt} / \mathrm{wt}) & =\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\mathrm{wt} \mathrm{sample}(\mathrm{~g})}\right] \times 10^{6}(\mathrm{ppm} / \mathrm{g} \text { solute } / \mathrm{g} \text { sample }) \quad \mathrm{ppm}=\mu \mathrm{g} / \mathrm{g}=\mathrm{mg} / \mathrm{kg} \\
\mathrm{ppb}(\mathrm{wt} / \mathrm{wt}) & =\left[\frac{\mathrm{wt} \mathrm{solute}(\mathrm{~g})}{\mathrm{wt} \mathrm{sample}(\mathrm{~g})}\right] \times 10^{9}(\mathrm{ppb} / \mathrm{g} \text { solute } / \mathrm{g} \text { sample }) \quad \mathrm{ppb}=\mathrm{ng} / \mathrm{g}=\mu \mathrm{g} / \mathrm{kg}
\end{aligned}
$$

Common Units for Expressing Trace Concentrations

Unit	Abbreviation	$\mathrm{wt} / \mathrm{wt}$	$\mathrm{wt} / \mathrm{vol}$	$\mathrm{vol} / \mathrm{vol}$
Parts per million	ppm	$\mathrm{mg} / \mathrm{kg}$	mg / L	$\mu \mathrm{L} / \mathrm{L}$
$\left(1 \mathrm{ppm}=10^{-4} \%\right)$		$\mu \mathrm{g} / \mathrm{g}$	$\mu \mathrm{g} / \mathrm{mL}$	$\mathrm{nL} / \mathrm{mL}$
Parts per billion	ppb	$\mu \mathrm{g} / \mathrm{kg}$	$\mu \mathrm{g} / \mathrm{L}$	nL / L
$\left(1 \mathrm{ppb}=10^{-7} \%=10^{-3} \mathrm{ppm}\right)$		ng / g	$\mathrm{ng} / \mathrm{mL}$	$\mathrm{pL} / \mathrm{mL}^{a}$
Milligram percent	$\mathrm{mg} \%$	$\mathrm{mg} / 100 \mathrm{~g}$	$\mathrm{mg} / 100 \mathrm{~mL}$	

Example 5.14

A 2.6 g sample of plant tissue was analyzed and found to contain $3.6 \mu \mathrm{~g}$ zinc. What is the concentration of zinc in the plant in ppm ? In ppb ?

Solution

$$
\begin{aligned}
& \mathrm{ppm}=\mu \mathrm{g} / \mathrm{g} \mathrm{~g} \\
& \quad \frac{3.6 \mu \mathrm{~g}}{2.6 \mathrm{~g}}=1.4 \mu \mathrm{~g} / \mathrm{g} \equiv 1.4 \mathrm{ppm} \\
& \frac{3.6 \times 10^{3} \mathrm{ng}}{2.6 \mathrm{~g}}=1.4 \times 10^{3} \mathrm{ng} / \mathrm{g} \equiv 1400 \mathrm{ppb}
\end{aligned}
$$

One ppm is equal to 1000 ppb . One ppb is equal to $10^{-7} \%$.

LIQUID SAMPLES

$$
\begin{aligned}
& \%(\mathrm{wt} / \mathrm{vol})=\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\text { vol sample }(\mathrm{mL})}\right] \times 10^{2}(\% / \mathrm{g} \text { solute } / \mathrm{mL} \text { sample }) \\
& \mathrm{ppm}(\mathrm{wt} / \mathrm{vol})=\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\text { vol sample }(\mathrm{mL})}\right] \times 10^{6}(\mathrm{ppm} / \mathrm{g} \text { solute } / \mathrm{mL} \text { sample }) \\
& \mathrm{ppb}(\mathrm{wt} / \mathrm{vol})=\left[\frac{\mathrm{wt} \text { solute }(\mathrm{g})}{\text { vol sample }(\mathrm{mL})}\right] \times 10^{9}(\mathrm{ppb} / \mathrm{g} \text { solute } / \mathrm{mL} \text { sample }) \\
& \text { In dilute aqueous solution } \quad \text { A deciliter is } 0.1 \mathrm{~L} \text { or } 100 \mathrm{~mL} . \\
& \quad \mathrm{ppm}=\mu \mathrm{g} / \mathrm{mL}=\mathrm{mg} / \mathrm{L} \\
& \mathrm{ppb}=\mathrm{ng} / \mathrm{mL}=\mu \mathrm{g} / \mathrm{L}
\end{aligned}
$$

Example 5.16

A $25.0-\mu \mathrm{L}$ serum sample was analyzed for glucose content and found to contain $26.7 \mu \mathrm{~g}$. Calculate the concentration of glucose in $\mu \mathrm{g} / \mathrm{mL}$ and in $\mathrm{mg} / \mathrm{dL}$.

Solution

$$
\begin{aligned}
\mathrm{ppm} & =\mu \mathrm{g} / \mathrm{mL}: \\
\mu \mathrm{g} / \mathrm{mL} & =26.7 / 25 \times 0.001=1070 \\
\mathrm{mg} / \mathrm{dL} & =\mathrm{ppm} / 10 \\
& =1070 / 10=107
\end{aligned}
$$

[Note the relationship: $10 \mathrm{ppm}(\mathrm{wt} / \mathrm{vol})=1 \mathrm{mg} / \mathrm{dL}$]
$>$ Clinical chemists frequently prefer to use a unit other than weight for expressing the amount of major electrolytes in biological fluids $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Cl}^{-}\right.$, $\mathrm{H}_{2} \mathrm{PO}^{-}$, etc.). This is the unit milliequivalent (meq).
> We can calculate the milliequivalents of a substance from its weight in milligrams simply as follows (similar to how we calculate millimoles):

$$
\begin{aligned}
\mathrm{meq} & =\frac{\mathrm{mg}}{\mathrm{eq} \mathrm{wt}(\mathrm{mg} / \mathrm{meq})}=\frac{\mathrm{mg}}{\mathrm{fw}(\mathrm{mg} / \mathrm{mmol}) / n(\mathrm{meq} / \mathrm{mmol})} \\
n & =\text { charge on ion }
\end{aligned}
$$

$$
\mathrm{mmole}=\mathrm{mg} / \mathrm{f} . \mathrm{wt}(\mathrm{mg} / \mathrm{mmol})
$$

Example 5.18
 $$
(\mathrm{f} . \mathrm{wt}=65.4 \mathrm{~g} / \mathrm{mol})
$$

The concentration of zinc ion in blood serum is about $1 \mathrm{mg} / \mathrm{L}$. Express this as meq/L.

Solution

$$
\text { Convert from ppm } \rightarrow \text { meq } / \mathrm{L} \quad \mathrm{meq} / \mathrm{L}=\mathrm{ppm} / \text { eq.wt }
$$

The equivalent weight of Zn^{2+} is $65.4(\mathrm{mg} / \mathrm{mmol}) / 2(\mathrm{meq} / \mathrm{mmol})=32.7 \mathrm{mg} / \mathrm{meq}$. Therefore,

$$
\begin{aligned}
& \text { eq.wt }=\text { f.wt } / n \\
& =65.4 / 2=32.7
\end{aligned} \frac{1 \mathrm{mg} \mathrm{Zn} / \mathrm{L}}{32.7 \mathrm{mg} / \mathrm{meq}}=3.06 \times 10^{-2} \mathrm{meq} / \mathrm{L} \mathrm{Zn}
$$

$>$ The various ways that concentrations of solutions are expressed and the relationship between them
Convert from ppm $\rightarrow \mathrm{g} / \mathrm{L}$
$\mathrm{g} / \mathrm{L}=\mathrm{ppm} \times 10^{-3}$
Convert from $M \rightarrow \mathrm{~g} / \mathrm{L}$
$\mathrm{g} / \mathrm{L}=M \mathrm{x}$ f.wt
Convert from $\mathrm{ppm} \rightarrow M$
$M=\mathrm{ppm} \times 10^{-3} / \mathrm{f} . \mathrm{wt}$
Convert from $M \rightarrow \mathrm{ppm}$
$\mathrm{ppm}=M \times \mathrm{f} . \mathrm{wt} \times 10^{3}$
Convert from ppm $\rightarrow \mathrm{mg} / \mathrm{dL}$
$\mathrm{mg} / \mathrm{dL}=\mathrm{ppm} / 10$
Convert from ppm \rightarrow meq/L
Convert from meq/L \rightarrow ppm
Convert from $\mathrm{mg} / \mathrm{dL} \rightarrow \mathrm{meq} / \mathrm{L}$
$\mathrm{meq} / \mathrm{L}=\mathrm{ppm} / \mathrm{eq} . \mathrm{wt}$
$\mathrm{ppm}=\mathrm{meq} / \mathrm{L} \times \mathrm{eq} . \mathrm{wt}$
Convert from meq/L $\rightarrow \mathrm{mg} / \mathrm{dL}$
Convert from meq/L $\rightarrow \mathrm{g} / \mathrm{L}$
$\mathrm{meq} / \mathrm{L}=\mathrm{mg} / \mathrm{dL} \times 10 / \mathrm{eq} . \mathrm{wt}$
$\mathrm{mg} / \mathrm{dL}=$ meq x eq.wt $/ 10$
$\mathrm{g} / \mathrm{L}=\mathrm{meq} / \mathrm{L} \times \mathrm{eq} . \mathrm{wt} \times 10^{-3}$

A chloride concentration is reported as $300 \mathrm{mg} / \mathrm{dL}$. What is the concentration in meq/L?

$$
\begin{aligned}
\mathrm{meq} / \mathrm{L} & =\mathrm{mg} / \mathrm{dL} \times 10 / \mathrm{eq} \cdot \mathrm{wt} \\
& =300 \times 10 / 35.5=84.5
\end{aligned}
$$

A calcium concentration is reported as $5.00 \mathrm{meq} / \mathrm{L}$. What is the concentration in $\mathrm{mg} / \mathrm{dL}$?

$$
\begin{aligned}
& \text { eq.wt } \mathrm{Ca}^{+2}=40 / 2=20 \\
& \mathrm{mg} / \mathrm{dL}=\mathrm{meq} / \mathrm{L} \times \mathrm{eq} . \mathrm{wt} / 10 \\
& \quad=5 \times 20 / 10=10
\end{aligned}
$$

A urine specimen has a chloride concentration of $150 \mathrm{meq} / \mathrm{L}$. If we assume that the chloride is present in urine as sodium chloride, what is the concentration of NaCl in g / L ?

$$
\begin{aligned}
\mathrm{g} / \mathrm{L} & =\mathrm{meq} / \mathrm{L} \times \mathrm{eq} \cdot \mathrm{wt} \times 10^{-3} \\
& =150 \times 58.5 \times 10^{-3}=8.775
\end{aligned}
$$

