

Al-Rasheed University College
Department of Medical Laboratory Technique
Medical Chemistry
Lecture 4
Prepared by
Dr. Kutaiba Ibrahim Alzand

Weak Acids and Bases-What Is the pH?

$>$ Weak acids (or bases) are only partially ionized.
$>$ The ionization constant can be used to calculate the amount ionized and, from this, the pH .
$>$ The acidity constant for acetic acid at 250 C is 1.75×10^{-5} :

$$
\mathrm{HOAc} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OAc}^{-} \quad \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]}=1.75 \times 10^{-5}
$$

$>$ When acetic acid ionizes, it dissociates to equal portions of H^{+}and OAc^{-}by such an amount.
$>$ If the original concentration of acetic acid is C and the concentration of ionized acetic acid species $\left(\mathrm{H}^{+}\right.$and $\left.\mathrm{OAc}^{-}\right)$is \boldsymbol{x}, then the final concentration for each species at equilibrium is given by

$$
\underset{(C-x)}{\mathrm{HOAc}} \rightleftharpoons \underset{(C}{\mathrm{H}^{+}}+\underset{\mathrm{OAc}^{-}}{\mathrm{OH}^{-}}
$$

Example 7.7

Calculate the pH and pOH of a $1.00 \times 10^{-3} M$ solution of acetic acid. Solution

Initial

$$
\mathrm{HOAc} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OAc}^{-}
$$

$$
\begin{array}{ccc}
{[\mathrm{HOAc}]} & {\left[\mathrm{H}^{+}\right]} & {\left[\mathrm{OAc}^{-}\right]} \\
1.00 \times 10^{-3} & 0 & 0
\end{array}
$$

Change ($x=\mathrm{mmol} / \mathrm{mL}$ HOAc ionized)
Equilibrium

$-x$	$+x$	$+x$
$1.00 \times 10^{-3}-x$	x	x

$$
\begin{aligned}
& \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OAc}^{-}\right]}{[\mathrm{HOAc}]}=1.75 \times 10^{-5} \quad \frac{(x)(x)}{1.00 \times 10^{-3}-x}=1.75 \times 10^{-5} \\
& \frac{x^{2}}{1.00 \times 10^{-3}}=1.75 \times 10^{-5} \quad x=1.32 \times 10^{-4} M \equiv\left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log \left(1.32 \times 10^{-4}\right)=4-\log 1.32=4-0.12=3.88 \\
& \mathrm{pOH}=14.00-3.88=10.12
\end{aligned}
$$

Example 7.8

The basicity constant K_{b} for ammonia is 1.75×10^{-5} at $25^{\circ} \mathrm{C}$. (It is only coincidental that this is equal to K_{a} for acetic acid.) Calculate the pH and pOH for a $1.00 \times 10^{-3} \mathrm{M}$ solution of ammonia.

Solution

$$
\begin{gathered}
\underset{\left(1.00 \times 10^{-3}-x\right)}{\mathrm{NH}_{3}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
x \\
\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.75 \times 10^{-5}
\end{gathered}
$$

The same rule applies for the approximation applied for a weak acid. Thus,

$$
\begin{aligned}
& \frac{(x)(x)}{1.00 \times 10^{-3}}=1.75 \times 10^{-5} \\
& x=1.32 \times 10^{-4} M=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=-\log 1.32 \times 10^{-4}=3.88 \\
& \mathrm{pH}=14.00-3.88=10.12
\end{aligned}
$$

Salts of Weak Acids and Bases

> The salt of a weak acid, for example. $\mathrm{CH}_{3} \mathrm{COONa}$, is a strong electrolyte, like (almost) all salts, and completely ionizes.

$$
\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}
$$

> In addition, the anion of the salt of a weak acid is a conjugate base, which will accept protons. It partially hydrolyzes in water to form hydroxide ion and the corresponding undissociated acid. For example,

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
$$

$>$ This ionization is also known as hydrolysis of the salt ion.
> The weaker the acid, the stronger its conjugate base, that is, the more strongly will combine with a proton, as from the water.

We can write an equilibrium constant:

$$
K_{b}=\frac{[\mathrm{HOAc}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OAc}^{-}\right]}
$$

The value of K_{b} can be calculated from K_{a} of acetic acid and K_{w}

$$
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}}=5.7 \times 10^{-10}
$$

The product of K_{a} of any weak acid and K_{b} of its conjugate base is always equal to K_{w} :

$$
K_{a} K_{b}=K_{w}
$$

For any salt of a weak acid HA that hydrolyzes in water,

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-}
$$

$$
\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=\frac{K_{w}}{K_{a}}=K_{b}
$$

If the original concentration of A^{-}is $C_{\mathrm{A}^{-}}$, then

$$
\underset{\left(C_{\left.\mathrm{A}^{-}-x\right)}\right.}{\mathrm{A}^{-}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{x}{\mathrm{HA}}+\underset{x}{\mathrm{OH}^{-}}
$$

$>$ The quantity x can be neglected compared to $C_{\mathrm{A}-}$ if $C_{\mathrm{A}-}>100 K_{b}$, which will generally be the case for such weakly ionized bases.

We can solve for the OH^{-}concentration using Equation above

$$
\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{OH}^{-}\right]}{C_{\mathrm{A}}}=\frac{K_{w}}{K_{a}}=K_{b}
$$

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{K_{w}}{K_{a}} \cdot C_{\mathrm{A}^{-}}}=\sqrt{K_{b} \cdot C_{\mathrm{A}^{-}}}
$$

Example 7.9

Calculate the pH of a 0.10 M solution of sodium acetate.

Solution

Write the equilibria

$$
\begin{aligned}
\mathrm{NaOAc} & \rightarrow \mathrm{Na}^{+}+\mathrm{OAc}^{-} \text {(ionization) } \\
\mathrm{OAc}^{-}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{HOAc}+\mathrm{OH}^{-} \text {(hydrolysis) }
\end{aligned}
$$

Write the equilibrium constant

$$
\frac{[\mathrm{HOAc}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OAc}^{-}\right]}=K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}}=5.7 \times 10^{-10}
$$

Let x represent the concentration of HOAc and OH^{-}at equilibrium. Then, at equilibrium,

$$
\begin{aligned}
& {[\mathrm{HOAc}]=\left[\mathrm{OH}^{-}\right]=x} \\
& {\left[\mathrm{OAc}^{-}\right]=C_{\mathrm{OAc}^{-}}-x=0.10-x}
\end{aligned}
$$

Since $C_{\mathrm{OAc}^{-}} \gg K_{b}$, neglect x compared to $C_{\mathrm{OAc}^{-}}$. Then,

$$
\frac{(x)(x)}{0.10}=5.7 \times 10^{-10}
$$

$$
x=\sqrt{5.7 \times 10^{-10} \times 0.10}=7.6 \times 10^{-6} \mathrm{M}
$$

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =7.6 \times 10^{-6} \mathrm{M} \\
{\left[\mathrm{H}^{+}\right] } & =\frac{1.0 \times 10^{-14}}{7.6 \times 10^{-6}}=1.3 \times 10^{-9} \mathrm{M} \\
\mathrm{pH} & =-\log 1.3 \times 10^{-9}=9-0.11=8.89
\end{aligned}
$$

Similar equations can be derived for the cations of salts of weak bases (the salts are completely dissociated). These are Brønsted acids and ionize (hydrolyze) in water:

$$
\mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~B}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$$
K_{a}=\frac{[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{BH}^{+}\right]}
$$

$$
\frac{[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{BH}^{+}\right]}=\frac{K_{w}}{K_{b}}=K_{a}
$$

and for $\mathrm{NH}_{4}{ }^{+}$,

$$
K_{a}=\frac{K_{w}}{K_{b}}=\frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}}=5.7 \times 10^{-10}
$$

The salt of a weak base ionizes to form equal amounts of B and $\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{H}^{+}\right.$if we disregard hydronium ion formation as was done previously). We can therefore solve for the hydrogen ion concentration (by assuming $C_{\mathrm{BH}^{+}}>100 K_{a}$):

$$
\begin{gathered}
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]}{C_{\mathrm{BH}^{+}}}=\frac{K_{w}}{K_{b}}=K_{a} \\
{\left[\mathrm{H}^{+}\right]=\sqrt{\frac{K_{w}}{K_{b}} \cdot C_{\mathrm{BH}^{+}}}=\sqrt{K_{a} \cdot C_{\mathrm{BH}^{+}}}}
\end{gathered}
$$

Again, this equation only holds if $C_{\mathrm{BH}^{+}}>100 K_{a}$. Otherwise, the quadratic formula must be solved.

Example 7.10

Calculate the pH of a 0.25 M solution of ammonium chloride.

Solution

Write the equilibria

$$
\begin{aligned}
\mathrm{NH}_{4} \mathrm{Cl} & \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \quad \text { (ionization) } \\
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \quad \text { (hydrolysis) } \\
\left(\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}\right. & \left.\rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}\right)
\end{aligned}
$$

Write the equilibrium constant

$$
\frac{\left[\mathrm{NH}_{4} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=K_{a}=\frac{K_{w}}{K_{b}}=\frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}}=5.7 \times 10^{-10}
$$

Let x represent the concentration of $\left[\mathrm{NH}_{4} \mathrm{OH}\right]$ and $\left[\mathrm{H}^{+}\right]$at equilibrium. Then, at equilibrium,

$$
\begin{aligned}
{\left[\mathrm{NH}_{4} \mathrm{OH}\right] } & =\left[\mathrm{H}^{+}\right]=x \\
{\left[\mathrm{NH}_{4}^{+}\right] } & =C_{\mathrm{NH}_{4}^{+}}-x=0.25-x
\end{aligned}
$$

Since $C_{\mathrm{NH}_{4}+} \gg K_{a}$, neglect x compared to $C_{\mathrm{NH}_{4}+}$. Then,

$$
\begin{aligned}
\frac{(x)(x)}{0.25} & =5.7 \times 10^{-10} \\
x & =\sqrt{5.7 \times 10^{-10} \times 0.25}=1.2 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

Compare this last step with Equation 7.39. Also, compare the entire setup and solution with those in Example 7.7. The $\mathrm{NH}_{4} \mathrm{OH}$ formed is undissociated and does not contribute to the pH :

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =1.2 \times 10^{-5} M \\
\mathrm{pH} & =-\log \left(1.2 \times 10^{-5}\right)=5-0.08=4.92
\end{aligned}
$$

