Diabetes and Severe Hyperglycemia

Introduction to Diabetic Ketoacidosis (DKA) and Hyperosmolar Hyperglycemic Syndrome(HHS)

What DKA and HHS Have in Common

- 1. Both occur in clients with diabetes
- 2. Life-threatening/medical emergencies, elevated blood glucose
- 3. Increased serum plasmaosmolarity(normal: 275_295 mOsm/L)
- 4. Extreme osmotic diuresis and dehydration

Osmotic Diuresis

Hyperglycemia

Blood that has elevated glucose levels is filtered through the kidneys.

Glucosuria

Glomerular filtration of more glucose than the renal tubule can absorb – creates high levels of glucose in the urine

Osmotic diuresis

Increased urination due to the substances in fluid filtered by kidneys

When serum glucose is high, it is more than the kidneys can reabsorb into the bloodstream.

8

H₂O 88 H₂O H_2O H₂O 3 H₂O H₂O H₂O Excess glucose is dumped (excreted) into the urine. This is called glycosuria.

Characteristic Comparison

	Insulin	Blood glucose	Progression	Ketone bodies	Other labs	Osmotic diuresis
Diabetic ketoacidosis (most oftentype 1 diabetic client)	Profound lack of insulin	>250 mg/dL	Rapid	Present in urine and blood	ABG pH < 7.30, HCO ₃ < 16mEq/L, and ketones	Yes! And dehydration
Hyperosmolar hyperglycemic syndrome (Type 2 diabetic clients)	Minimal amount of insulin	> 600 mg/dL	Slower	Absent or minimal	Marked increase in serum osmolality	Yes! And dehydration

What is the main difference between DKA and HHS?

Ketosis and Ketoacidosis

Ketosis

- Normal metabolic state
- 1 6 mmol/L ketones in blood
- Burning fatas energy

Ketoacidosis

- Dangerous metabolic state
- 15 30 mmol/L ketones in blood
- Affects clients with type

 diabetes

Metabolic acidosis is a dangerous imbalance for your client.

Burning Fat for Fuel Can Have a Price...

Fat is **not** the best choice for **primaryenergy** sourcing for clients with **type 1 diabetes.**

Ketones are a by-product of fat metabolism. Ketones are **acidic.**

Without insulin to move glucose into cells, the body turns to fat stores for energy. Excessive ketones = Ketoacidosis

Excessive Ketones = Severe Dehydration

Blood pH is altered and becomes acidic, which puts the client in **metabolic acidosis**.

Electrolytes are severely depleted in an **effort to restore balance** from ketosis.

Imbalances in:

- Sodium Potassium Nitrogen
- Chloride Phosphate
- Bicarbonate Magnesium

A client with ketones in their urine and blood is most likely experiencing HHS or DKA? Why?

NursingCare for HHS and DKA

Priorities	Interventions	Monitoring
1. Correct osmotic diuresis_ induced dehydration to sustain blood pressure.	• Fluid volume replacement	Monitor vital signs.Monitor lab work.
2. Correct hyperglycemia.	 Controlled insulin administration_ to prevent cerebral edema 	Monitor serum glucose.Assess neuro status.
3. Correct electrolyte imbalance.	 Give electrolytes based on client lab work. 	 Monitor lab work and signs of depleted electrolytes.

- ✓ The 4 major similarities of HHS and DKA are:
 - 1. Both occur in clients with diabetes
 - 2. Life-threatening/medical emergencies, elevated blood glucose
 - 3. Increased serum plasmæsmolarity
 - 4. Extreme osmotic diuresis and dehydration

- ✓ The 3 major priorities of care for a client with HHS or DKA are to safely:
 - 1. Correct severe dehydration from osmotic diuresis.
 - 2. Correct hyperglycemia.
 - 3. Correct electrolyte imbalance.

