Assessment of Cardiovascular System

Assessment Parameters

Cardiac Output

- Measures the effectiveness of the heart's pumping abilities.
- CO is defined as the amount of blood that leaves the heart in one minute.

CO = Stroke Volume (SV) X Heart Rate (HR)

- Normal CO: Approximately 4-8 liters/minute
- Cardiac Index: CO per square meter of BSA
 - CO ÷ body surface area = CI

- Stroke Volume (SV)
 - The <u>amount</u> of blood that leaves the heart with each beat or ventricular contraction.
 - Not all blood ejected
 - Normal Adult 70 ml / beat
- Ejection Fraction (EF)
 - The <u>percentage</u> of end-diastole blood actually ejected with each beat or ventricular contraction.
 - Normal adult 55-70% (healthy heart)

Stroke Volume

• Three factors regulate stroke volume:

- Preload

- The degree of stretch of the ventricle at the end of diastole.
- Contractility
 - Force of ventricular contraction (systole); inotropy.

Afterload

• The amount of <u>resistance</u> the ventricular wall must overcome to eject blood during systole.

Preload

- The degree of ventricular stretch at end-diastole
- The Frank-Starling Law of the Heart
 - ↑ Preload = ↑ Contractility (to a point)
- Factors Affecting Preload
 - Circulating volume
 - Body positioning
 - Atrial systole or "kick"
 - Medications
 - Diuretics (i.e. Lasix)
 - ACE Inhibitors (i.e. Vasotec)
 - I.V. Fluids

Stroke Volume Cont.,

Contractility

- Positive inotropic agents
 - 1 Force of contraction
- Negative inotropic agents
 - ↓ Force of contraction
- Factors that affect contractility
 - Autonomic nervous system (ANS)
 - Medications:
 - Digoxin (Lanoxin)
 - Beta-adrenergic blockers (i.e. metoprolol)
 - Calcium channel blockers (i.e. verapamil)

Afterload

- Resistance to ventricular ejection during systole
- Factors that affect afterload
 - High systemic blood pressures (SVR)
 - Aortic valve stenosis
 - High pulmonary blood pressures (PVR)
 - Pulmonary valve stenosis
 - Diameter of arterial vessels
 - Blood characteristics
 - Medications:
 - ACE (angiotension converting enzyme) inhibitors

Laboratory Analysis

- Serum Enzymes
- Blood Chemistry
 - Lipid Studies
 - Electrolytes
 - Renal Function Studies
- Coagulation Studies
- Hematologic Studies

Cardiac enzymes

- Creatine Phosphokinase (Total CK / CPK)
 - <u>Non-Specific</u>: enzyme elevated with damage to heart or skeletal muscles and brain tissue.
 - Elevates in 4 to 8 hours
 - Peaks in 15 to 24 hours
 - Returns to normal in 3 to 4 days
- Creatine Phosphokinase Isoenzyme (CPK-MB)
 - <u>Specific</u>: isoenzyme of CPK; elevated with cardiac muscle damage.
 - Elevates in 4 to 8 hours
 - Peaks in 15 to 24 hours
 - Returns to normal in 3 to 4 days

Cardiac Enzymes

Myoglobin

- <u>Non-specific</u>: a heme protein found in muscle tissue; elevated with damage to skeletal or cardiac muscle.
 - Elevates in 2 to 3 hours
 - Peaks 6-9 hours
 - Returns to normal 12 hours

• Lactic Acid Dehydrogenase (LDH)

- <u>Non-specific</u>: enzyme elevated with damage to many body tissues.
 (i.e. heart, liver, skeletal muscle, brain and RBC's); Not frequently used today.
 - Elevates in 1 to 3 days
 - Peaks in 2 to 5 days
 - Returns to normal 10 to 14 days

Cardiac Enzymes Cont.,

• Troponin I / T

- <u>Specific</u>: a contractile protein released with cardiac muscle damage; not normally present in serum.
 - Elevates in 4 to 6 hours
 - Peaks in 10 to 24 hours
 - Returns to normal in 10 to 15 days
- Sensitivity superior to CK-MB within the first 6 hours of event.
- Has replaced LDH for client's who delay seeking treatment.

Other Serum Enzymes

• C-Reactive Protein

- marker of acute inflammatory reactions
- Homocysteine
 - presence in serum suggests increased risk of cardiovascular events.

Natriuretic Peptides

released into bloodstream with cardiac chamber distention.

Blood Chemistry Analysis

• Lipoprotein (Lipid) Profile

- Total Cholesterol
 - Normal < 200mg/dl
- Triglyceride
 - Normal < 150 mg/dl
- -Low Density Lipoproteins (LDL)
 - Normal <130 mg/dl / "Optimal" <100mg/dl
- High Density Lipoproteins (HDL)
 - Normal: > 40 mg/dl
 - > 60 mg/dl cardio-protective

- Serum Electrolytes
 - Na, K, Ca and Mg
 - Glucose / Hemoglobin A1C
- Coagulation Studies
 - PTT / aPTT
 - PT / INR
- Hematologic Studies – CBC
- Renal Function Studies
 - BUN
 - Creatinine

Diagnostic Testing

- Electrocardiography *
 - 12-Lead EKG
 - Continuous bedside monitoring
 - Ambulatory monitoring
- Stress Tests
 - Thallium Scans
- Echocardiograms
- Cardiac Catheterizations

Cardiac Stress Tests

- Stressing the heart to monitor performance
- Assists in Determining
 - Coronary artery disease
 - Cause of chest pain
 - Functional capacity of heart
 - Identify dysrhythmias
 - Effectiveness of medications
 - Establish goals for a physical fitness routine

- Thallium Scan
 - Radiological exam to assess how well the coronary arteries perfuse the myocardium.
 - Images are taken 1 to 2 minutes prior to end of stress test and again 3 hours later.
 - Nursing Considerations
 - -NPO
 - IV Access

Echocardiogram

- Ultrasound procedure of the heart combined with an electrocardiogram (EKG).
 - Assesses
 - Cardiac (size & shape)
 - Motion of structures (chamber walls / valves)

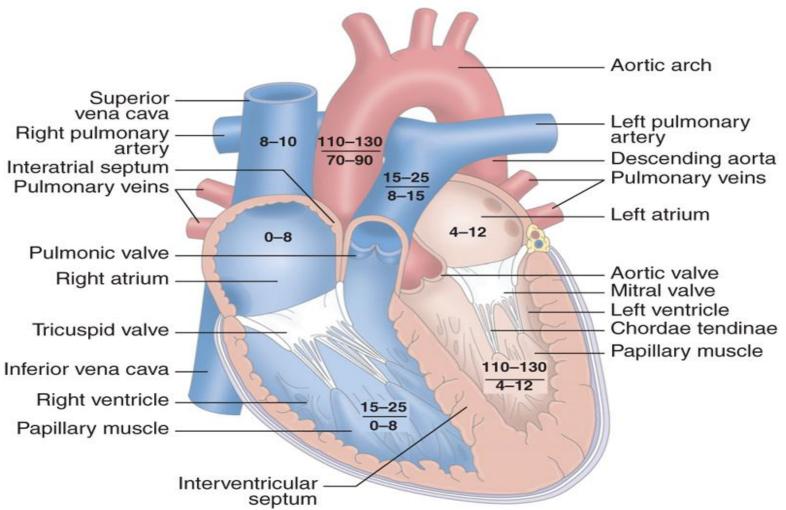
Echocardiogram Cont.,

- Types of Echocardiograms
 - <u>Transcutanoeous</u>
 - Non-invasive / painless
 - Transesphogeal (TEE)
 - Invasive / Clearer images

Cardiac Catheterization

- "Gold Standard" of cardiac diagnostics
- Invasive procedure to assess
 - Cardiac chamber pressures & oxygen saturations
 - Detect congenital or acquired structural defects
 - Ejection fraction
- Often Includes:
 - Coronary arteriography: to assess coronary artery patency
- Using X-ray technique called fluoroscopy
 - Requiring the use of I.V. contrast / dye

Cardiac Catheterization Cont.,


• Nursing Care

- Prior to procedure
 - Explain procedure
 - NPO prior to procedure (8 to 12 hours)
 - Check allergies (I.V. dye / shellfish / iodine)
 - Laboratory tests
- During procedure
 - I.V. access
 - Hemodynamic monitoring
 - Arterial and venous access via catheters (sheaths)
 - Femoral (most common) or brachial

Cardiac Catheterization Cont.,

- Post-Procedure Nursing Care
 - Maintain Client Bedrest for 6 to 8 hours
 - Extremity straight & HOB up < 30 degrees
 - Maintain Adequate Hydration
 - IV Fluids (if ordered)
 - Encourage Fluids
 - Frequent Monitoring For Complications
 - Vital signs
 - Puncture site
 - Distal pulses
 - Laboratory results

Great Vessel and Heart Chamber Pressures

