Vitamins

- Vitamins are organic compounds that regulate cellular metabolism, assisting the biochemical processes that release energy from digested food.
- Vitamins are called micronutrients because they are needed in small quantities when compared with other nutrients (water, carbohydrates, proteins, and fats).
- Vitamin requirements are dependent on many factors, such as:
 a. body size.

b. amount of exercise.

c. rate of growth, and,

d. pregnancy.

- Vitamins cannot be manufactured by the body in sufficient quantities to sustain life, so it must be supplied by the diet .
- The total volume of vitamins a healthy person normally requires each day would barely fill a teaspoon , Thus the units of measure for vitamins (e.g. milligrams or micrograms), all vitamins are essential to life

Thus, when vitamins are lacking in the diet, metabolic deficits result

Classifications of vitamins

Water-soluble vitamins, include : •

- $\scriptstyle 1. \quad$ Vitamin C and ,
- 2. B-complex vitamins:
 - B 1(thiamine),
 - B (riboflavin),
 - B3 (niacin or nicotinic acid),
 - B6 (pyridoxine),
 - B~ (folic acid),
 - B 12 (cobalamin),
 - pantothenic acid, and biotin.

The body cannot store water-soluble vitamins; thus, people must get a daily supply in the • diet. Water-soluble vitamins can be affected by food processing, storage, and preparation.

Fat-soluble vitamins, include :

- 1. Vitamin A.
- 2. Vitamin D.
- 3. Vitamin E, and,
- 4. Vitamin K.
 - The body can store these vitamins, although there is a limit to the amounts of
 - vitamins E and K the body can store.
 - Therefore, a daily supply of fat-soluble vitamins is not absolutely necessary.
 - Vitamin content is highest in fresh foods that are consumed as soon as possible after

harvest.

Functions of Vitamins

Although each vitamin has specific metabolic task , general functions of vitamins • are

- 1. components of coenzymes .
- 2. antioxidants.
- 3. hormones that affect gene expression .
- 4. a component of cell membranes, and
- 5. a component of the light sensitive rhodopsin molecule in the eyes (vitaminA)

Vitamin metabolism

- The way in which our bodies digest , absorb , and transport vitamins depends on the vitamin's solubility .
- Vitamins traditionally are classified as either fat soluble or water soluble
- The fat soluble vitamins are A,D,E, and K .
- The water soluble vitamins are C and all the B vitamins .
- Fat –Soluble vitamins
- Unlike water soluble vitamins fat soluble vitamins can be stored in the liver and in adipose tissue for long periods.
- The body uses this reserve in times of inadequate intake.
- Fat soluble vitamin accumulation in the liver and in adipose tissue is the reason that excess intake can result in toxicity overtime.

Water Soluble vitamins

• With the exception of vitamins B12 and B6 and folic acid the body does not store water –

soluble vitamins to any significant extent.

• Therefore, the body does not have a reserve supply and requires foods rich inwater – soluble

Vitamin	functions	Sources
Vitamin A (retinol, retinal, retinoic acid)	 Epithelial tissue proliferation Retinal pigmentation Immune system (antigen recognition). Antioxidant 	 Whole milk and whole milk products, eggs, fruits and vegetables (green leafy and yellow), fish, animal liver, fish liver oil. Caution: Do not exceed a daily dose of over 10,000 international units if pregnant orhistory of liver disease

Vitamin D (cholecalciferol, ergosterol)	 Bone and tooth development. Enhances immunity 	Fortified milk, margarine, eggs,fish, cod liver oil, oatmeal, sweet potatoes, vegetable oils
Vitamin E Vitamin E(tocopherol)	 Synthesis of heme. Antioxidant. prevents oxidation of polyunsaturated fatty acids and of vitamins A and C 	Cold-pressed vegetable oils, dark green leafy vegetables, milk, eggs, meats, legumes,nuts, seeds, whole grains
Vitamin K	 Formation of prothrombin, blood clotting Bone formation & repair; synthesis of osteocalcin. 	Dark green leafy vegetables, asparagus, broccoli, Brussels sprouts, cabbage, cauliflower, egg yolks, liver, oatmeal, oats, rye, safflower oil, soy beans, wheat

Water soluble vitamins

Vitamin	functions	Sources
B complex	 Metabolism of carbohydrates and some 	Pork, fish, eggs, poultry, dried beans,
Vitamin B1	amino acids	whole grains, wheat germ, oatmeal,
(thiamine)	(energy).	bread, pasta, brown rice, legumes, rice
	 production of hydrochloric acid. 	bran, peanuts
	 Enhances circulation and, 	
	 assists in blood formation 	
Vitamin B2	 Oxidation and reduction of 	Milk, whole grains, green vegetables,
(riboflavin)	carbohydrates, fats, and proteins.	liver, cheese, eggyolks, fish, legumes,
	 Red blood cell (RBC) formation. 	meat, poultry, yogurt
	 antibody production 	

Vitamin B6 (pyridoxine)	 Functions as coenzyme to: protein and amino acidmetabolism. absorption of fats and protein 	Whole grains, liver, fish, poultry, green beans, meats, nuts, potatoes, eggs, brewer's yeast
Vitamin B12 (cobalamin compounds)	 Metabolically functions as acoenzyme: hydrogen acceptor and replication of genes 	Milk, eggs, cheese, meat, fish, poultry, brewer's yeas
Biotin	 Synthesis of fatty acids. Protein metabolism. Utilization of glucose 	Liver, kidneys, dark green vegetables, egg yolk, green beans, brewer's yeast, milk, poultry, saltwater fish, whole grains
Vitamin C (ascorbic acid)	 Formation of RBCs. Production of collagen (capillary wall integrity)enzyme. Metabolism of amino acids. Prevention of oxidation of vitamins 	Citrus fruits, strawberries, cantaloupe, fresh vegetables:potatoes, cabbage, tomatoes, broccoli, green peppers

Folic acid (pteroylglutamic acid)	 Synthesis of purines and thymine (DNA formation). Maturation of RBCs. Functions as coenzyme inDNA and RNA synthesis 	Liver, green leafy vegetables, meat, fish, poultry, whole grains, barley, bran, brewer's yeast, brown rice
Niacin (nicotinicacid)	 Coenzyme in energy metabolism 	Meats, dairy products, whole grains, cereals, tuna, broccoli,carrots, cheese, corn flour
Pantothenic acid	 Metabolism of carbohydrates and fats. 	Meats, whole grain cereals, legumes

symptoms of vitamin A toxicity include dry, itchy skin, headache, nausea, and loss of appetite. Signs of severe overuse over a short period of time include dizziness, blurred vision and slowed growth.

Vitamin A toxicity can also cause severe birth defects and may increase the risk for bone loss and hip fractures.

Signs of vitamin D toxicity include excess calcium in the blood, slowed mental and physical growth, decreased appetite, nausea and vomiting.

Megadose of supplemental vitamin E may pose a hazard to people taking blood-thinning medications such as Coumadin (also known as <u>warfarin</u>) and those on <u>statin drugs</u>.

People taking blood-thinning drugs or anticoagulants should moderate their intake of foods with vitamin K, because excess vitamin K can alter blood clotting times. Large doses of vitamin K are not advised.