Medicall Chemistry Hmboraitry

EXPERIMENT 5 QUANTITATIVE ANALYSIS OF H MIXTURE (SODIUM HYDROXIDE + SODIUM CARBONATE)

INTRODUCTION

- The analysis of such mixtures requires two titrations: one with an alkaline-range indicator, such as phenolphthalein with a transition range at a pH of about (9), and the other with an acidrange indicator, such as methyl orange.

PROCEDURE

1. Clean the burette and Homogenized with HCl solution.
2. Fill the burette with $(0.1 \mathrm{~N}) \mathrm{HCl}$.
3. Transfer (10 ml) unknown of a mixture solution into conical flask.
4. Add 1-2 drops of phenolphthalein indicator (solution become pink).
5. Titrate with standard $(0.1 \mathrm{~N}) \mathrm{HCl}$ from burette until the pink color disappears (change to colorless).
At this grade: all the hydroxide and half of the carbonate have been neutralized. Let us assume that the volume of acid by " P " ml .

PROCEDURE

6. Now add 2-3 drops methyl orange indicator in to the mixture solution (become yellow).
7. Titration until the solution just beings to change from yellow to red (Onion).

* At this grade: all the hydroxide and all of the carbon have been neutralized. Let us assume that the volume of acid by " M " ml .

The equation of reaction:

$\checkmark \mathrm{P}(\mathrm{ml})=$ Volume of HCl which equivalent to all OH^{-}and $1 / 2 \mathrm{CO}_{3}=$.
$\checkmark \mathrm{M}(\mathrm{ml})=$ Volume of HCl which equivalent to all OH^{-}and all $\mathrm{CO}_{3}=$.
$\checkmark \mathrm{M}-\mathrm{P}=$ Volume of HCl which equivalent to $1 / 2 \mathrm{CO}_{3}=$.
$\checkmark \quad 2(\mathrm{M}-\mathrm{P})=$ Volume of HCl which equivalent to all $\mathrm{CO}_{3}=$.
$\checkmark \mathrm{M}-2(\mathrm{M}-\mathrm{P})=$ Volume of HCl which equivalent to all OH^{-}.

CALCULATION

区 calculate the normality of hydroxide:

$$
\text { - } \mathrm{N}_{\text {acid }} \times \mathrm{V}_{\text {acid }}[\mathrm{M}-2(\mathrm{M}-\mathrm{m})]=\mathrm{N}_{\text {base }} \times \mathrm{XV}_{\text {base }}
$$

囚 To calculate the normality of carbonate:

- $\mathrm{N}_{\text {acid }} \times \mathrm{V}_{\text {acid }}[2(\mathrm{M}-\mathrm{m})]=\mathrm{N}_{\text {base }} \mathrm{XV}_{\text {base }}$
\square Weight in grams per liter (no. of grams) = Normality x GEW
- GEW for $\mathrm{NaOH}=40 \mathrm{~g} / \mathrm{mol}$ and GEW for $\mathrm{Na}_{2} \mathrm{CO}_{3}=53 \mathrm{~g} / \mathrm{mol}$
- NaOH \% $\frac{W}{V}=$ no.of grams $x \frac{100}{1000}$
- $\mathrm{Na}_{2} \mathrm{CO}_{3} \% \frac{W}{V}=$ no. of grams $x \frac{100}{1000}$

