Medical Chemistry Laboratory

EXPERIMENT 6 OXIDATION-REDUCTION REACTION (KMNO₄ STANDARDIZATION)

Introduction

- These types of titration depend upon the change in oxidation number of reacting substances, a redox reaction between an oxidizing agent and a reduction agent.
- A substance that is oxidized is termed a *reducing agent*, while the substance that is reduced is term an *oxidizing* agent.

Oxidation

Is defined as a loss of one or more electrons by atom or an increase in the oxidation number.

Reduction

Is defined as a gain of one or more electrons by atom or a decrease in the oxidation number (opposite oxidation).

Oxidation can never take place without reduction, because something must be able to pick up the electrons lost by the oxidized molecules.

Types of Sterilizer

■ Many sterilizer have the property of killing bacteria because they are either oxidizing or reducing agent.

Oxidizing agent Reducing agent Chlorine Formaldehyde Potassium permanganate Sulfur dioxide Iodine solution

Procedure

•KMnO₄ is a strong oxidizing agent, and will be standardization in this experiment versus oxalic acid using sodium oxalate as the primary standard.

Procedure:

- 1. Take 0.13 gm of sodium oxalate to 250 ml conical flask.
- 2. Add 20 ml of 1 N sulfuric acid (H_2SO_4) .
- 3. Heat the solution to about 60 °C.
- 4. Then titration solution versus permanganate slowly.
- The solution must still be hot at the end point.

$$5H_2C_2O_4 + 2MnO_4 + 6H^+ \longrightarrow 10CO_2 + 2Mn^{++} + 8H_2O$$

Calculation

■ Calculate the normality of KMnO₄

■ Titer factor of
$$NaOX/_{KMnO4} = \frac{Wt.NaOX}{Vol.KMnO4}$$

■ Normaity of
$$KMnO4 = \frac{T \times 1000}{GEW}$$