Al-Rasheed University/ Collage of Pharmacy

Kidney toxicity

by:

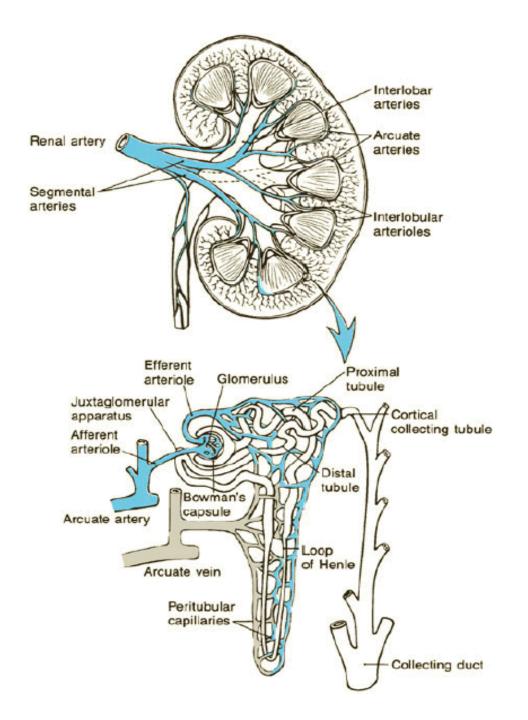
M.Sc. Nibras Jamal

TOXIC RESPONSES OF THE KIDNEY Introduction

- The functional integrity of the mammalian kidney is vital to total body homeostasis.
- Plays a principal role in the :
- 1. excretion of metabolic wastes
- 2. regulation of extracellular fluid volume, electrolyte composition, and acid—base balance.
- 3. Synthesizes and releases hormones, such as erythropoietin, and metabolizes vitamin D3 to the active dihydroxy vitamin D3 form.
- A toxic insult to the kidney could disrupt any or all of these functions and could have profound effects on total body metabolism.

Introduction (cont.)

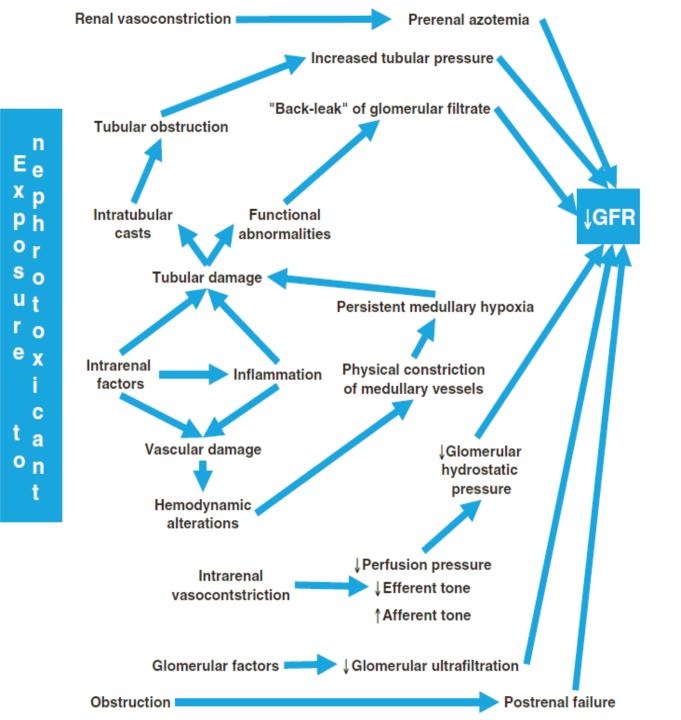
- Kidneys are equipped with a variety of detoxification mechanisms and have considerable functional reserve and regenerative capacities.
- The nature and severity of the toxic insult may be such that these detoxification and compensatory mechanisms are overwhelmed.
- Renal failure can be profound; permanent renal damage may result, requiring chronic dialysis treatment or kidney transplantation.


Filtration, Reabsorption, and Excretion Rates of Different Substances by the Kidneys*

	FILTERED (meq/24 h)	REABSORBED (meq/24 h)	EXCRETED (meq/24 h)	REABSORBED (%)
Glucose (g/day)	180	180	0	100
Bicarbonate (meq/day)	4320	4318	2	>99.9
Sodium (meq/day)	25,560	25,410	150	99.4
Chloride (meq/day)	19,440	19,260	180	99.1
Water (L/day)	169	167.5	1.5	99.1
Urea (g/day)	48	24	24	50
Creatinine (g/day)	1.8	0	1.8	0

^{*}Glomerular filtration rate: 125 mL/min = 180 L/24 h.

FUNCTIONAL ANATOMY


- The kidney reveals three clearly demarcated anatomic areas: the cortex, medulla, and papilla.
- The cortex constitutes the major portion of the kidney and receives a disproportionately higher percentage (90%) of blood flow compared to the medulla (\sim 6–10%) or papilla (1–2%).
- Thus, when a blood-borne toxicant is delivered to the kidney, a high percentage of the material will be delivered to the cortex and will have a greater opportunity to influence cortical rather than medullary or papillary functions.

PATHOPHYSIOLOGIC RESPONSES OF THE KIDNEY

Acute Kidney Injury

- A decline in kidney function secondary to an injury that leads to a functional or structural change in the kidney.
- AKI is defined as a complex disorder that comprises multiple causative factors and occurs in a variety of settings with varied clinical manifestations ranging from a minimal elevation in serum creatinine to anuric renal failure.
- Any decline in GFR is complex and may result from:
- ✓ Prerenal factors (renal vasoconstriction, intravascular volume depletion, and insufficient cardiac output)
- ✓ Postrenal factors (ureteral or bladder obstruction)
- ✓ Intrarenal factors (glomerulonephritis, tubular cell injury, death, and loss resulting in back leak; renal vasculature damage, interstitial nephritis).

Acute Kidney Injury (cont.)

- It has been estimated that prerenal factors are responsible for AKI in 55–60% of patients, intrarenal factors are responsible for AKI in 35–40% of patients, and postrenal factors are responsible for AKI in <5% of patients.
- ❖ It is thought that more than 90% of AKI mediated by intrarenal factors is the result of ischemia/reperfusion injury or nephrotoxicity.

Mechanisms of Chemically Induced Acute Renal Failure

PRERENAL	VASOCONSTRICTION	CRYSTALLURIA	TUBULAR TOXICITY	ENDOTHELIAL INJURY	GLOMERULOPATHY	INTERSTITIAL NEPHRITIS
Diuretics	Nonsteroidal anti-inflammatory drugs	Sulfonamides	Aminoglycosides	Cyclosporine	Gold	Antibiotics
Angiotensin receptor antagonists		Methotrexate	Cisplatin	Mitomycin C	Penicillamine	Nonsteroidal anti- inflammatory drugs
Angiotensin-converting enzyme inhibitors	Radiocontrast agents	Acyclovir	Vancomycin	Tacrolimus	Nonsteroidal anti- inflammatory drugs	C
	Cyclosporine	Triamterene	Pentamidine	Cocaine	C	Diuretics
Antihypertensive agents	Tacrolimus	Ethylene glycol	Radiocontrast agents	Conjugated estrogens		
	Amphotericin B	Protease inhibitors	Heavy metals	Quinine		
			Haloalkane- and Haloalkene-cysteine conjugates			