كلية الرشيد (لجامعة
قسم هندسة تقنيات الحاسوب المرحلة / الرابع
المادة / ادارة مشثاريع
مدرس المادة / د. محمد علاء حسين

Lecturn
 Lecture 7

Lecture By
Of Computer Technical Engineering Department
Dr. Mohammed Alaa Hussein
dr.mohamed.ala@alrasheedcol.edu.iq

(Productivity)

Productivity is defined as a ratio between the output volume and the volume of inputs. In other words, it measures how efficiently production inputs, such as labor and capital, are being used in an economy to produce a given level of output.

SAMPLE PROBLEMS FOR PRODUCTIVITY

Example \# 1

A company that processes fruits and vegetables is able to produce 400 cases of canned peaches in one half hour with four workers. What is the labor productivity?
Solution:
Labor productivity = Quality Produced / Labors Hours
$=400$ cases (4 workers x $1 / 2$ hours / workers)
$=200$ cases per labor hour

Example \# 2

A wrapping paper company produced 2,000 rolls of paper one day. Standard price is $\$ 1 /$ roll. Labor cost was $\$ 160$, material cost was $\$ 50$, and overhead was $\$ 320$. Determine the multifactor productivity.
Solution:
Multifactor productivity $=$
Quality produced * standard price / (Labor cost + Material cost + Overhead)
$=2,000$ rolls x \$ $1 /(\$ 160+\$ 50+\$ 320)$
$=3.77$ rolls output per dollars

Example \# 3

a) Find the productivity if four workers installed 720 square yards of carpeting in eight hours.
b) Compute for the productivity of a machine which produced 68 usable pieces in two hours.
Solution:
a) Productivity $=$ yards of carpeting install / Labors Hours worked
$=720$ square yard / (4 workers x8 hours / worker)
$=720$ yards $/ 32$ Hours
$=22.5$ yards/ hours
b) Productivity $=$ Usable Pieces $/$ Production Time
$=68$ usable pieces $/ 2 \mathrm{hrs}$
$=34$ pieces/hours

Example \# 4

Determine the multifactor productivity for the combined input of the labor and the machine time using the following:
Input:
Labor: \$ 1,000
Materials: \$520
Overheads: \$ 2,000
Keep in mind the Production is 1760 unit
Solution:
Multifactor Productivity $=$ Output $/($ Labor + Materials + Overheads $)$
$=1,760$ Units $/(\$ 1,000+\$ 520+\$ 2,000)$
$=0.50$ units
Solve the Following Problems

Problem No\#1

Collins Little Company has a stuff of 4, each working 8 hours per day (for a payroll cost of $\$ 640 /$ day) and overhead expenses of $\$ 400 /$ day. Collins processes and closes on 8 titles each day.
The company recently purchased a computerized title search system that will allow the processing of 14 titles per day. Although the staff, their works hours, and pay will be same, the overheads expenses are now $\$ 800$ per day.
Solution:
Labor productivity with the old system:
$=8$ titles per day/ 32 labor hours $=0.25$ titles per hour
Labor productivity with the new system:
$=14$ titles per day/ 32 labor hours $=0.44$ title per labor hours
Multifactor productivity with the old system:
$=8$ titles per day $/(640+400)=0.0077$ titles per dollars
Multifactor productivity with the new system:
$=14$ titles per day $/(640+800)=0.0097$ titles per dollars

Problem No\#2

At Modem Lumber, Inc., Art Binley, a president and a producer of an apple crates sold to growers, has been able, with his current equipment, to produces 240 crates per 100 logs. He currently purchases 100 logs per day, and each logs required 3 labor hours to process. He believes that he can hire a professional buyer who can buy a better quality log at the same cost. If this is the case, he increases his production to 260 crates per 100 logs. His labor hours will increase by 8 hours per day. What will be the impact on productivity (measured in crates per labor -hour) if the buyers is hired? What is the Growth in productivity in this case?

Solution:

a) Current labor productivity $=240$ crates / 100 logs (3 hours pert log)
$=240 / 300$
$=0.8$ create per labor hour
b) Labor productivity with buyer $=260$ crates $/(100 \operatorname{logs}(3$ hours per logs $)+$ 8 hours)
$=260 / 308$
$=0.844$ crates per labor hours
c) Growth $=(0.844-0.8) / 0.8 \times 100=$

Problem No\#3

Calculate the productivity for the following operations:
a) Three employees processed 600 insurance policies last week. They 8 hours per day, 5 days per week.
b) A team of workers made 400 units of product, which is valued by its standard cost of $\$ 10$ each (before markups for other expenses and profit). That accounting department reported that for this job the actual cost were $\$ 400$ per labor, $\$ 1000$ for materials and 4300 for overhead:
Solution:
a) Labor productivity $=$ Policies processed

Employee, hours
$=600$ policies
3 (40)
$=5$ policies per hours
b) Multifactor productivity = Quality at standard cost

Labor + Materials + Overheads
$=400$ units (\$10/units)
$\$ 400+\$ 1000+\$ 3000$
$=\$ 4000$
\$1700
$=2.35$

Problem No\#4

Student tuition at Boering University is $\$ 100$ per semester credit hours. The states supplement school revenue by matching student tuition, dollars per dollars. Average class size for typical three credit course is 50 students. Labor costs are $\$ 4000$ per class, material costs are $\$ 20$ per student, and overhead cost are $\$ 25,000$ per class.
Find:
a) What is the multifactor productivity ratio?
b) If instructors work an average, what is the labor productivity ratio? (Keep in mind that professor delivering the lecture work 14 hours per week the semester last for 16 weeks)
a) Value of Output $=(50$ student $) \times(3$ credit hours $) \times(\$ 100$ tuition $+\$ 100$ state support)
class student credit hours $=\$ 30,000$ per class
Value of Output $=$ Labor + Materials + Overheads
$=\$ 4000+(\$ 20$ per student x 50 students $)+\$ 25,000$ Class
$=\$ 30,000$ per class
Multifactor productivity $=$ Output/ Input
$=\$ 30,000 /$ class
\$ 30,000/ class
$=1.00$
b) Labor productivity is the ratio of the value of output to the labor hours. The value of output is the same as in part (a), or $\$ 30,000$ per class, so Labor hours of input $=14$ hours $\times 16$ week $=224$ hours per class
Labor productivity $=$ Output/ Input $=\$ 30,000$ per class 224 hours per class $=$ \$ 133.93 per hours

